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Differential Privacy and Subsampling
Subsampling (Informal Definition) A subsampling mechanism is a random-
ized algorithm S : Xn → Xm that given as input a tuple x = (x1, . . . ,xn)
outputs a random tuple y = (y1, . . . , ym) obtained by “subsampling” x.
Subsampled Mechanisms
I Given a mechanism M : Xm→ Z and a subsampling S : Xn→ Xm we

consider the subsampled mechanism MS(x) that first obtains y ∼ S(x) and
then outputs M(y).

I Privacy amplification intuition: MS should provide more privacy than M
because when the subsample y ∼ S(x) does not contain the individual we are
trying to protect no leakage occurs.

I The output distribution of MS(x) is a mixture:
Pr[MS(x) = z] =

∑
y∈Xm

Pr[S(x) = y] · Pr[M(y) = z] =
∑
y
ωx(y) · µy(z)

I Technical challenge: analyze differential privacy guarantees of mechanisms
whose output distribution is a mixture (with a large number of components).

Example Subsampled Gaussian Mechanism (n = 3,m = 2)

x = {(0, 0), (1, 0), (0, 1)} → MS(x) ≡ N (p0,σ2I) +N (p1,σ2I) +N (p2,σ2I)
3

x′ = {(1, 1), (1, 0), (0, 1)} → MS(x) ≡ N (p0,σ2I) +N (p′1,σ2I) +N (p′2,σ2I)
3
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Examples of Subsampling Mechanisms

Sampling Without replacement Given a set x = {x1, . . . ,xn}, y ∼ S(x) is
uniform among all

(
n
m

)
subsets of x if size m. Can also be defined for multisets

with indistinguishable copies.
Poisson Sampling Given a set x = {x1, . . . ,xn}, y ∼ S(x) is obtained by
adding to y each element from x with fixed probability γ.
Sampling With replacement Given a set x = {x1, . . . ,xn}, y ∼ S(x) is
obtained by picking m elements independently and uniformly from x (with re-
placement). Even when x is a set y can be a multiset.

Divergences and Privacy Profiles
The Hockey-Stick Divergence Given distributions µ, µ′ over Z define the
divergence:

Deε(µ‖µ′) =
∑
z∈Z

[µ(z)− eεµ′(z)]+ = sup
E⊆Z

µ(E)− eεµ′(E)

This is an f -divergence (in the sense of Csiszár) and therefore satisfies a number
of important properties, including joint convexity and data processing inequality.
Differential Privacy with Divergences A randomized mechanism M : X →
Z is (ε, δ)-DP if and only if:

sup
x'x′

Deε(M(x)‖M(x′)) ≤ δ

Privacy Profiles Using the divergence point of view allows us to define the
privacy profile of a mechanism M that gives all the (ε, δ) pairs for which the
mechanism is (ε, δ)-DP:

δ(eε) = sup
x'x′

Deε(M(x)‖M(x′))

Group Privacy Profiles Using the relation 'k to allow k changes in the dataset
we obtain the group privacy profiles:

δk(eε) = sup
x'kx′

Deε(M(x)‖M(x′))

Example (Laplace Mechanism) ForM(x) = f (x) +Lap(b) with GS(f ) = ∆
we have:

δ(eε) =
[
1− exp

(
ε

2
− b

2∆

)]
+

δk(eε) ≤
[
1− exp

(
ε

2
− b

2k∆

)]
+

Subsampled Privacy Profiles
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Method Overview

Setup Given a subsampled mechanism MS and inputs x ' x′ define the distri-
butions

ω ≡ S(x)
ω′ ≡ S(x′)

µ = ωM ≡MS(x)
µ′ = ω′M ≡MS(x′)

Decomposing Mixtures via Maximal Couplings Given the total variation
distance θ = TV(ω‖ω′), the maximal coupling between ω and ω′ yields the
overlapping decompositions:

ω = (1− θ)ω0 + θω1
ω′ = (1− θ)ω0 + θω′1

=⇒ µ = (1− θ)µ0 + θµ1
µ′ = (1− θ)µ0 + θµ′1

Cancelation for Overlapping Mixtures If eε′ = 1 + θ(eε− 1) and β = eε
′
/eε

then we have
Deε′((1− θ)µ0 + θµ1‖(1− θ)µ0 + θµ′1) = θDeε(µ1‖(1− β)µ0 + βµ′1)

≤ (1− β)θDeε(µ1‖µ0) + βθDeε(µ1‖µ′1)

Coupling Conditional Subsamplings By joint convexity, taking a coupling
π ∈ C(ω̃, ω̃′) we get a bound in terms of group privacy profiles:

Deε(ω̃M‖ω̃′M) ≤
∑
y,y′
π(y, y′)Deε(M(y)‖M(y′)) ≤

∑
y,y′
π(y, y′)δd(y,y′)(eε)

Distance-compatible Couplings Suppose ω̃ and ω̃′ admit a d-compatible
coupling π with (y, y′) ∈ supp(π) ⇒ d(y, y′) = d(y, supp(ω̃′)). Defining Yk =
{y : d(y, supp(ω̃′)) = k} and optimizing over couplings yields:

min
π∈C(ω̃,ω̃′)

∑
y,y′
π(y, y′)δd(y,y′)(eε) =

∑
k≥0

ω(Yk)δk(eε)

Tightness Results The bounds obtained by this method are attained by the ran-
domized membership mechanism Mp,u(x) = RandomizedResponsep(I[u ∈ x]).

Results for Typical Subsamplings

Concrete results depend on the neighbouring relations considered forM andMS:
remove/add-one (R) or substitute-one (S).

Sampling 'M 'MS θ δ′

Poisson(γ) R R γ γδ

WOR(n,m) S S m
n

m
n δ
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n
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k∈[m]

(
m
k
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n
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n
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Poisson(γ) S S (It’s complicated, see paper)


