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Differential Privacy and Subsampling

Subsampling (Informal Definition) A subsampling mechanism is a random-
ized algorithm S : X" — X' that given as input a tuple © = (zy,...,2,)
outputs a random tuple y = (1, ..., y,,) obtained by “subsampling” x.

Subsampled Mechanisms

» Given a mechanism M : X" — Z and a subsampling S : X" — X" we
consider the subsampled mechanism A/°(z) that first obtains y ~ S(x) and
then outputs M (y).

» Privacy amplification intuition: 1> should provide more privacy than M
because when the subsample yy ~ S(z) does not contain the individual we are
trying to protect no leakage occurs.

» The output distribution of M*(x) is a mixture:
Pr[M?>(z) = 2] = > Pr[S(x)=y] - PriM(y) = z| = zy:wx(y) <y (2)

yeXm

» Technical challenge: analyze differential privacy guarantees of mechanisms
whose output distribution is a mixture (with a large number of components).

Example Subsampled Gaussian Mechanism (n =3, m = 2)

r=1{(0,0),(1,0),(0,1)} — M°(z)=
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N (po, o) + N (p), 0*I) + N (ph, o°I)

' ={(1,1),(1,0),(0,1)} — M°(z)=
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Examples of Subsampling Mechanisms

Sampling Without replacement Given aset x = {zy,...,2,}, y ~ S(x) is
uniform among all (;"l) subsets of x if size m. Can also be defined for multisets

with indistinguishable copies.

Poisson Sampling Given a set © = {x1,...,2,}, ¥y ~ S(x) is obtained by

adding to y each element from = with fixed probability .

Sampling With replacement Given a set v = {zy,...,2,}, y ~ S(x) is
obtained by picking m elements independently and uniformly from z (with re-

placement). Even when z is a set y can be a multiset.
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Divergences and Privacy Profiles

The Hockey-Stick Divergence Given distributions 1, 1/ over Z define the
divergence:
De-(pl|p') = D _[u(z) — e/ (2)]4 = sup p(E) — e (E)
zeZ Lz

This is an f-divergence (in the sense of Csiszar) and therefore satisfies a number
of important properties, including joint convexity and data processing inequality.

Differential Privacy with Divergences A randomized mechanism M : X —
7 is (£,0)-DP if and only if:

sup D (M (x)||M(z") <6

x~x!

Privacy Profiles Using the divergence point of view allows us to define the
privacy profile of a mechanism M that gives all the (£,0) pairs for which the
mechanism is (&, 0)-DP:

0(€°) = sup Do-(M (z)||M(z"))

xr~x

Group Privacy Profiles Using the relation ~" to allow % changes in the dataset
we obtain the group privacy profiles:

Or(€") = sup De=(M (x)[| M ("))

xrk !
Example (Laplace Mechanism) For M (z) = f(x)+ Lap(b) with GS(f) = A
we have:
i £ b \| i £ b \|
& p— 1 _ _— < < 1 - _
o(€e°) | exp (2 2A>_+ 0r(e®) < | exp (2 2/{A)_+

Subsampled Privacy Profiles
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Method Overview

Setup Given a subsampled mechanism M* and inputs © ~ 2’ define the distri-
butions
(x 1w=wM = M°(x)

/

S
S(z') 1 =wM = M)

W
CU/

Decomposing Mixtures via Maximal Couplings Given the total variation
distance 0 = TV(wl||w'), the maximal coupling between w and W’ yields the

overlapping decompositions:
w:(l—é’)wo+9w1 N ,LL:(l—e),LL()—f—@,ul
W = (1—0)wy+ 0w, = (1—0)uy+ 0y

Cancelation for Overlapping Mixtures If & = 1+0(e° — 1) and 3 = ¢ /¢°
then we have

D.((1 = 0)po+ Op[[(1 — O)po + 0p1y) = 0D (pua ||(L — B) o + Bt
< (1= B)0D(p1| o) + BOD (g ]| p2])

Coupling Conditional Subsamplings By joint convexity, taking a coupling
m € C(w,w") we get a bound in terms of group privacy profiles:

De-(@M||@'M) < 7(y, y') Des(M(y)[M(y) < D7y, y") gy (€)

Y.,y Y.,y

Distance-compatible Couplings Suppose @ and &’ admit a d-compatible
coupling 7 with (y,v') € supp(m) = d(y,y') = d(y,supp(w’)). Defining Y} =
{y : d(y,supp(@’)) = k} and optimizing over couplings yields:

min_ > (Y, Y )0aryy)(€7) = 3 w(Yr)or(e)

reC(w,w) "y >0

Tightness Results The bounds obtained by this method are attained by the ran-
domized membership mechanism M, ,(x) = RandomizedResponse (I[u € z).

Results for Typical Subsamplings

Concrete results depend on the neighbouring relations considered for M and M*:
remove/add-one (R) or substitute-one (S).

Sampling  ~; ~s 0 5
Poisson(y) R R ~ ~0
WOR(,m) S m m
WR(nm) S S 1-(1-5" S (1) () (1-1)" "4
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S S (It's complicated, see paper)
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