Privacy Amplification by Subsampling Tight Analyses via Couplings and Divergences

Gilles Barthe² Borja Balle¹ ¹Amazon Research, Cambridge, UK

Marco Gaboardi³ ²IMDEA Software Institute, Madrid, Spain

Differential Privacy and Subsampling

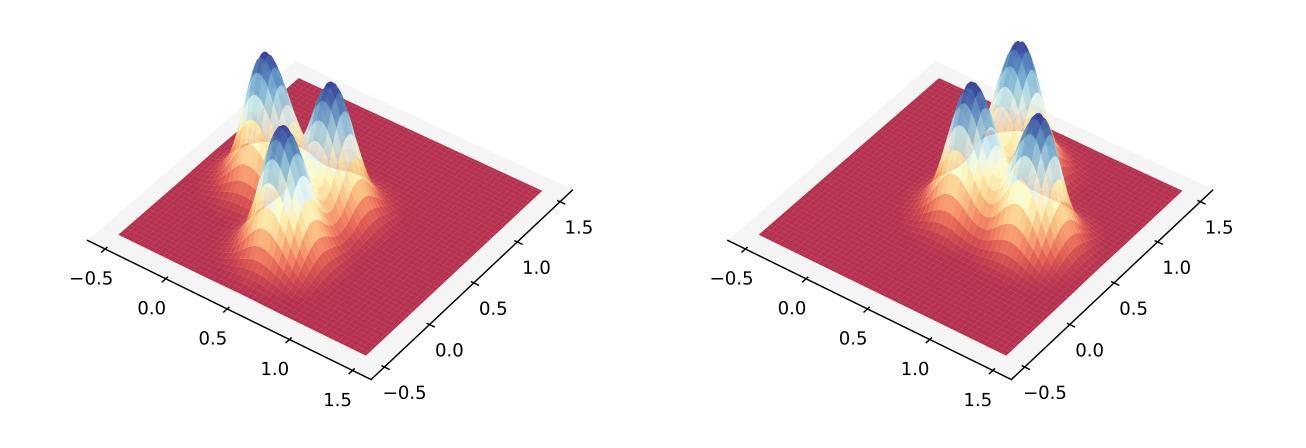
Subsampling (Informal Definition) A *subsampling mechanism* is a randomized algorithm $S: X^n \to X^m$ that given as input a tuple $x = (x_1, \ldots, x_n)$ outputs a random tuple $y = (y_1, \ldots, y_m)$ obtained by "subsampling" x.

Subsampled Mechanisms

- \blacktriangleright Given a mechanism $M: X^m \to Z$ and a subsampling $S: X^n \to X^m$ we consider the subsampled mechanism $M^{S}(x)$ that first obtains $y \sim S(x)$ and then outputs M(y).
- \blacktriangleright Privacy amplification intuition: M^S should provide more privacy than Mbecause when the subsample $y \sim S(x)$ does not contain the individual we are trying to protect no leakage occurs.
- The output distribution of $M^{S}(x)$ is a *mixture*: $\Pr[M^S(x) = z] = \sum_{y \in X^m} \Pr[S(x) = y] \cdot \Pr[M(y) = z] = \sum_y \omega_x(y) \cdot \mu_y(z)$
- Technical challenge: analyze differential privacy guarantees of mechanisms whose output distribution is a mixture (with a large number of components).

Example Subsampled Gaussian Mechanism (n = 3, m = 2)

 $x = \{(0,0), (1,0), (0,1)\} \rightarrow M^{S}(x) \equiv \frac{\mathcal{N}(p_{0}, \sigma^{2}I) + \mathcal{N}(p_{1}, \sigma^{2}I) + \mathcal{N}(p_{2}, \sigma^{2}I)}{2}$ $x' = \{(1,1), (1,0), (0,1)\} \rightarrow M^{S}(x) \equiv \frac{\mathcal{N}(p_{0}, \sigma^{2}I) + \mathcal{N}(p'_{1}, \sigma^{2}I) + \mathcal{N}(p'_{2}, \sigma^{2}I)}{2}$



Examples of Subsampling Mechanisms

Sampling Without replacement Given a set $x = \{x_1, \ldots, x_n\}$, $y \sim S(x)$ is uniform among all $\binom{n}{m}$ subsets of x if size m. Can also be defined for multisets with indistinguishable copies.

Poisson Sampling Given a set $x = \{x_1, \ldots, x_n\}$, $y \sim S(x)$ is obtained by adding to y each element from x with fixed probability γ .

Sampling With replacement Given a set $x = \{x_1, \ldots, x_n\}$, $y \sim S(x)$ is obtained by picking m elements independently and uniformly from x (with replacement). Even when x is a set y can be a multiset.

³University at Buffalo (SUNY), Buffalo, USA

Divergences and Privacy Profiles

The Hockey-Stick Divergence Given distributions μ , μ' over Z define the divergence:

 $D_{e^{\varepsilon}}(\mu \| \mu') = \sum_{z \in Z} [\mu(z) - e^{\varepsilon} \mu'(z)]_{+} = \sup_{E \subseteq Z} \mu(E) - e^{\varepsilon} \mu'(E)$

This is an f-divergence (in the sense of Csiszár) and therefore satisfies a number of important properties, including joint convexity and data processing inequality.

Differential Privacy with Divergences A randomized mechanism $M: X \rightarrow$ Z is (ε, δ) -DP if and only if:

 $\sup_{x'} D_{e^{\varepsilon}}(M(x) || M(x'))$

Privacy Profiles Using the divergence point of view allows us to define the privacy profile of a mechanism M that gives all the (ε, δ) pairs for which the mechanism is (ε, δ) -DP:

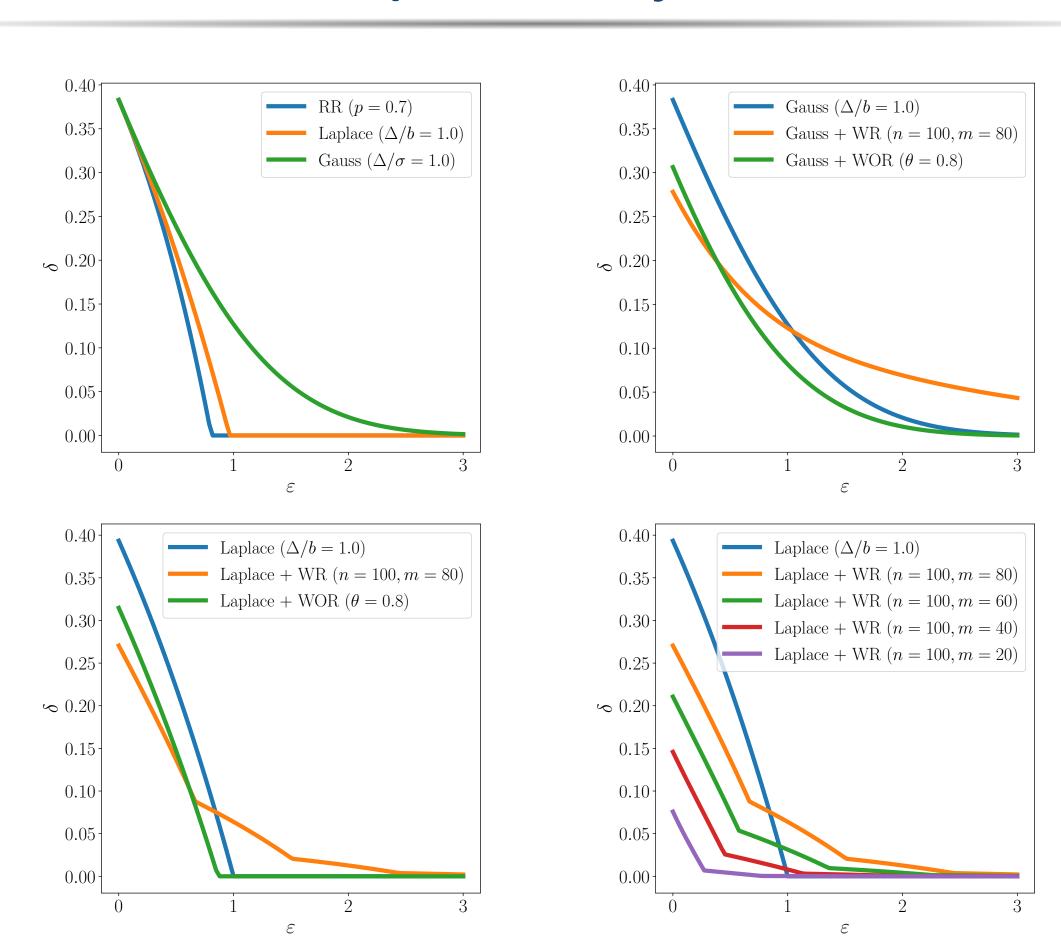
 $\delta(e^{\varepsilon}) = \sup_{x \simeq x'} D_{e^{\varepsilon}}(M(x) || M(x)) || M(x) = \sum_{x \simeq x$

Group Privacy Profiles Using the relation \simeq^k to allow k changes in the dataset we obtain the group privacy profiles:

 $\delta_k(e^{\varepsilon}) = \sup_{x \sim kx'} D_{e^{\varepsilon}}(M(x) \| I$

Example (Laplace Mechanism) For M(x) =we have:

$$\delta(e^{\varepsilon}) = \left[1 - \exp\left(\frac{\varepsilon}{2} - \frac{b}{2\Delta}\right)\right]_{+} \qquad \delta_k(e^{\varepsilon}) \le \left[1 - \exp\left(\frac{\varepsilon}{2} - \frac{b}{2k\Delta}\right)\right]_{+}$$



Method Overview

$$) \leq \delta$$

$$f(x) + \operatorname{Lap}(b)$$
 with $\operatorname{GS}(f) = \Delta$

Subsampled Privacy Profiles

Setup Given a subsampled mechanism M^S and inputs $x \simeq x'$ define the distributions

$$\omega \equiv S(x)$$
$$\omega' \equiv S(x')$$

overlapping decompositions:

 $\omega = (1 - \theta)\omega_0 + \theta\omega_1$ $\omega' = (1 - \theta)\omega_0 + \theta\omega_1'$

then we have

$$D_{\boldsymbol{e}^{\boldsymbol{\varepsilon}'}}((1-\theta)\mu_0+\theta\mu_1\|(1-\theta)\mu_0+\theta\mu_1')=\theta D_{\boldsymbol{e}^{\boldsymbol{\varepsilon}}}(\mu_1\|(1-\beta)\mu_0+\beta\mu_1')$$
$$\leq (1-\beta)\theta D_{\boldsymbol{e}^{\boldsymbol{\varepsilon}}}(\mu_1\|\mu_0)+\beta\theta D_{\boldsymbol{e}^{\boldsymbol{\varepsilon}}}(\mu_1\|\mu_1')$$

 \implies

 $\pi \in C(\tilde{\omega}, \tilde{\omega}')$ we get a bound in terms of group privacy profiles: $D_{e^{\varepsilon}}(\tilde{\omega}M\|\tilde{\omega}'M) \leq \sum \pi(y,y')$

Distance-compatible Couplings Suppose $\tilde{\omega}$ and $\tilde{\omega}'$ admit a *d*-compatible coupling π with $(y, y') \in \text{supp}(\pi) \Rightarrow d(y, y') = d(y, \text{supp}(\tilde{\omega}'))$. Defining $Y_k = d(y, y') = d(y, y')$ $\{y: d(y, \operatorname{supp}(\tilde{\omega}')) = k\}$ and optimizing over couplings yields: $\min_{\pi \in C(\tilde{\omega}, \tilde{\omega}')} \sum_{u, u'} \pi(y, y')$

Results for Typical Subsamplings

remove/add-one (R) or *substitute-one* (S).

Sampling	\simeq_M	\simeq_{M^S}	heta
$Poisson(\gamma)$	R	R	γ
WOR(n,m)	S	S	$\frac{m}{n}$
WR(n,m)	S	S	$1 - (1 - \frac{1}{n})$
WR(n,m)	S	R	$1 - (1 - \frac{1}{n})$
$Poisson(\gamma)$	S	S	

$$\mu = \omega M \equiv M^S(x)$$
$$\mu' = \omega' M \equiv M^S(x')$$

Decomposing Mixtures via Maximal Couplings Given the *total variation* distance $\theta = \mathsf{TV}(\omega \| \omega')$, the maximal coupling between ω and ω' yields the

$$\mu = (1 - \theta)\mu_0 + \theta\mu_1$$

$$\mu' = (1 - \theta)\mu_0 + \theta\mu'_1$$

Cancelation for Overlapping Mixtures If $e^{\varepsilon'} = 1 + \theta(e^{\varepsilon} - 1)$ and $\beta = e^{\varepsilon'}/e^{\varepsilon}$

Coupling Conditional Subsamplings By joint convexity, taking a coupling

$$D_{e^{\varepsilon}}(M(y)||M(y')) \le \sum_{y,y'} \pi(y,y') \delta_{d(y,y')}(e^{\varepsilon})$$

$$\delta'(y,y')(e^{\varepsilon}) = \sum_{k\geq 0} \omega(Y_k)\delta_k(e^{\varepsilon})$$

Tightness Results The bounds obtained by this method are attained by the *ran*domized membership mechanism $M_{p,u}(x) = \mathsf{RandomizedResponse}_p(\mathbb{I}[u \in x])$.

Concrete results depend on the neighbouring relations considered for M and M^S :

