
Adaptively Learning Probabilistic Deterministic

Automata from Data Streams

Borja Balle, Jorge Castro, and Ricard Gavaldà

LARCA research group, Universitat Politècnica de Catalunya,
08034 Barcelona, Spain

{bballe,castro,gavalda}@lsi.upc.edu

Submitted: December 5th, 2012
Revised: June 30th, 2013

Abstract

Markovian models with hidden state are widely-used formalisms for
modeling sequential phenomena. Learnability of these models has been
well studied when the sample is given in batch mode, and algorithms
with PAC-like learning guarantees exist for specific classes of models such
as Probabilistic Deterministic Finite Automata (PDFA). Here we focus
on PDFA and give an algorithm for inferring models in this class in the
restrictive data stream scenario: Unlike existing methods, our algorithm
works incrementally and in one pass, uses memory sublinear in the stream
length, and processes input items in amortized constant time. We also
present extensions of the algorithm that 1) reduce to a minimum the need
for guessing parameters of the target distribution and 2) are able to adapt
to changes in the input distribution, relearning new models when needed.
We provide rigorous PAC-like bounds for all of the above. Our algorithm
makes a key usage of stream sketching techniques for reducing memory
and processing time, and is modular in that it can use different tests for
state equivalence and for change detection in the stream.

1 Introduction

Data streams are a widely accepted computational model for algorithmic prob-
lems that have to deal with vast amounts of data in real-time and where feasible
solutions must use very little time and memory per example. Over the last ten
years, the model has gained popularity among the Data Mining community,
both as a source of challenging algorithmic problems and as a framework into
which several emerging applications can be cast (Aggarwal, 2007; Gama, 2010).
From these efforts, a rich suite of tools for data stream mining has emerged,
solving difficult problems related to application domains like network traffic
analysis, social web mining, and industrial monitoring.

Most algorithms in the streaming model fall into one of the following two
classes: a class containing primitive building blocks, like change detectors and

1

sketching algorithms for computing statistical moments and frequent items; and
a class containing full-featured data mining algorithms, like frequent itemsets
miners, decision tree learners, and clustering algorithms. A generally valid rule
is that primitives from the former class can be combined for building algo-
rithms in the latter class. Still, most of the work described above assumes that
data in the stream has tabular structure, i.e., stream elements are described by
(attribute,value) pairs. Less studied are the cases where elements have other
combinatorial structures (sequences, trees, graphs, etc.).

Here we focus on the sequence, or string, case. The grammatical inference
community has produced remarkable algorithms for learning various classes of
probabilistic finite state machines from sets of strings, presumably sampled from
some stochastic generating phenomenon. State-merging algorithms for learning
Probabilistic Deterministic Finite Automata (from now on, PDFA) have been
proposed in the literature. Some of them are based on heuristics, while others
come with theoretical guarantees, either of convergence in the limit, or in the
PAC sense (Carrasco and Oncina, 1999; Ron et al, 1998; Clark and Thollard,
2004; Palmer and Goldberg, 2007; Guttman et al, 2005; Castro and Gavaldà,
2008). However, all of them are batch-oriented and require the full sample to
be stored in memory and most of them perform several passes over the sam-
ple. Quite independently, the field known as Process Mining also attempts to
build models (such as state-transition graphs and Petri nets) from process logs;
its motivation comes more often from business process modeling or software
or hardware system analysis, and emphasis is in typically in understandable
outcome and modeling concurrency. Our approach remains closer to the gram-
matical inference one.

With the advent of the Web and other massively streaming environments,
learning and analysis have to deal with high-speed, continuously arriving datasets,
where the target to be modeled possibly changes or drifts over time. While the
data stream computational model is a natural framework for these applications,
adapting existing methods from either grammatical inference or process mining
is far from obvious.

In this paper we present a new state-merging algorithm for PAC learning
PDFA from a stream of strings. It uses little memory, constant processing time
per item, and is able to detect changes in the distribution generating the stream
and adapt the learning process accordingly. We will describe how to use it
to design a complete learning system, with the two-level idea described above
(primitives for sketching and change detection at the lower level, full learning
algorithm at a higher level). Regarding the state-merging component, we make
two main contributions. The first is the design of an efficient and adaptative
scheduling policy to perform similarity tests, so that sound decisions are made
as soon as enough examples are available. This behavior is essentially different
from the PAC algorithms in (Clark and Thollard, 2004; Guttman et al, 2005;
Palmer and Goldberg, 2007) which work by asking for a sample of a certain
size upfront which is then used for learning the target. Thus, these algorithms
always work with the worst-case sample size (over all possible distributions),
while our algorithm is able to adapt to the complexity of the target and learn
easy targets using less examples than predicted by the worst case analysis. Our
algorithm resembles that of Castro and Gavaldà (2008) in this particular aspect,
though there is still a significant difference: Their algorithm is adaptative in
the sense that it takes a fixed sample and tries to make the best of it. In

2

contrast, having access to an unbounded stream of examples, adaptiveness in
our algorithm comes from its ability to make probably correct decisions as soon
as possible.

The second contribution from a state-merging perspective is use of sketch-
ing methods from the stream algorithmics literature to find frequent prefixes
in streams of strings, which yield a PAC learning algorithm for PDFA using
memory O(1/µ), in contrast with the usual O(1/µ2) required by batch methods
– here µ denotes the distinguishability of the target PDFA, a quantity which
measures the difficulty of distinguishing the different states in a PDFA. In fact,
the exact bound values we prove mostly follow from well-known bounds from
statistics, and that have already been applied to state-merging methods. A main
contribution is showing that these still hold, and can in fact be made tighter,
when using sketches rather than full datasets.

The structure of the paper is as follows. Section 2 begins by introducing the
notation we use throughout the paper and our main definitions. Then, in Sec-
tion 2.5 we review previous work, and in Section 2.6 we explain our contributions
in more detail. Section 3 describes the complete stream learning system arising
from our methods and an illustrative scenario. Section 4 describes the basic
state-merging algorithm for streams, with its analysis, and Section 5 describes
two variants of the Space-Saving sketch central to having low memory use. In
Section 6 we present the strategy for automatically finding correct parameters
for the basic algorithm (number of states and distinguishability). Section 7
extends the algorithm to detect and handle changes in the stream. Finally,
Section 8 presents some conclusions and outlines future work.

2 Our Results and Related Work

The following sections give necessary notation and formal definitions of PDFA,
PAC learning, and the data stream computation model.

2.1 Notation

As customary, we use the notation Õ(f) as a variant of O(f) that ignores poly-
logarithmic factors, and the set of functions g such that O(f) = O(g) is denoted
with Θ(f). Unless otherwise stated we assume the unit-cost computation model,
where (barring model abuses) e.g. an integer count can be stored in unit memory
and operations on it take unit time. If necessary statements can be translated to
the logarithmic model, where e.g. a counter with value t uses memory O(log t),

or this factor is hidden within the Õ(·) notation.
We denote by Σ? the set of all strings over a finite alphabet Σ. Elements

of Σ? will be called strings or words. Given x, y ∈ Σ? we will write xy to denote
the concatenation of both strings. Concatenation is an associative operation.
We use λ to denote the empty string, which satisfies λx = xλ = x for all x ∈ Σ?.
The length of a string x ∈ Σ? is denoted by |x|. The empty string is the only
string with |λ| = 0. A prefix of a string x ∈ Σ? is a string u such that there
exists another string v such that x = uv; then string v is a suffix of x. Hence
e.g. uΣ? is the set of all strings having u as a prefix.

3

2.2 Learning Distributions in the PAC Framework

Several measures of divergence between probability distributions are considered.
Let Σ be a finite alphabet and let D1 and D2 be distributions over Σ?. The
total variation distance is L1(D1, D2) =

∑
x∈Σ? |D1(x)−D2(x)|. The supremum

distance is L∞(D1, D2) = maxx∈Σ? |D1(x)−D2(x)|. Another distance between
distributions over strings useful in the learning setting is the supremum over
prefixes distance, or prefix-L∞ distance: Lp

∞(D1, D2) = maxx∈Σ? |D1(xΣ?) −
D2(xΣ?)|, where D(xΣ?) denotes the probability under D of having x as a
prefix.

It is obvious from this definition that Lp
∞ is non-negative, symmetric, satisfies

the triangle inequality, and is 0 when its two arguments are the same distribu-
tion; it is therefore a distance. There are examples of distributions whose Lp

∞
is much larger than L∞. On the other hand, Proposition A.7 in Appendix A.4
shows that, up to a factor that depends on the alphabet size, Lp

∞ is always an
upper bound for L∞.

Now we introduce the PAC model for learning distributions. Let D be a
class of distributions over some fixed set X. Assume D is equipped with some
measure of complexity assigning a positive number |D| to any D ∈ D. We say
that an algorithm A PAC learns a class of distributions D using S(·) examples
and time T (·) if, for all 0 < ε, δ < 1 and D ∈ D, with probability at least
1 − δ, the algorithm reads S(1/ε, 1/δ, |D|) examples drawn i.i.d. from D and
after T (1/ε, 1/δ, |D|) steps outputs a hypothesis D̂ such that L1(D, D̂) ≤ ε.
The probability is over the sample used by A and any internal randomization.
As usual, PAC learners are considered efficient if the functions S(·) and T (·) are
polynomial in all of their parameters.

2.3 PDFA and State-Merging Algorithms

A Probabilistic Deterministic Finite Automaton (PDFA for short) T is a tuple
〈Q,Σ, τ, γ, ξ, q0〉 where Q is a finite set of states, Σ is an arbitrary finite alphabet,
τ : Q× Σ −→ Q is the deterministic transition function, γ : Q× (Σ ∪ {ξ}) −→
[0, 1] defines the probability of emitting each symbol from each state – where
we must have γ(q, σ) = 0 when σ ∈ Σ and τ(q, σ) is not defined –, ξ is a special
symbol not in Σ reserved to mark the end of a string, and q0 ∈ Q is the initial
state.

It is required that
∑
σ∈Σ∪{ξ} γ(q, σ) = 1 for every state q. Transition func-

tion τ is extended to Q×Σ? in the usual way. Also, the probability of generating
a given string xξ from state q can be calculated recursively as follows: if x is the
empty word λ the probability is γ(q, ξ), otherwise x is a string σ0σ1 . . . σk with
k ≥ 0 and γ(q, σ0σ1 . . . σkξ) = γ(q, σ0)γ(τ(q, σ0), σ1 . . . σkξ). It is well known
that if every state in a PDFA has a non-zero probability path to a state with
positive stopping probability, then every state in that PDFA defines a probabil-
ity distribution; we assume this is true for all PDFA considered in this paper.
For each state q a probability distribution Dq on Σ? can be defined as follows:
for each x, probability Dq(x) is γ(q, xξ). The probability of generating a prefix
x from a state q is γ(q, x) =

∑
yDq(xy) = Dq(xΣ?). The distribution defined

by T is the one corresponding to its initial state, Dq0 . Very often we will iden-
tify a PDFA and the distribution it defines. The following parameter is used to
measure the complexity of learning a particular PDFA.

4

Definition 2.1. For a distance dist among distributions, we say distributions
D1 and D2 are µ-distinguishable w.r.t. dist if µ ≤ dist(D1, D2). A PDFA T is
µ-distinguishable when for each pair of states q1 and q2 their corresponding dis-
tributions Dq1 and Dq2 are µ-distinguishable. The distinguishability of a PDFA
(w.r.t. dist) is defined as the supremum over all µ for which the PDFA is µ-
distinguishable. Unless otherwise noted, we will use dist = Lp

∞, and occasionally
use instead dist = L∞.

State-merging algorithms form an important class of strategies of choice for
the problem of inferring a regular language from samples. Basically, they try
to discover the target automaton graph by successively applying tests in order
to discover new states and merge them to previously existing ones according to
some similarity criteria. In addition to empirical evidence showing a good per-
formance, state-merging algorithms also have theoretical guarantees of learning
in the limit the class of regular languages (see de la Higuera (2010)).

Clark and Thollard (2004) adapted the state-merging strategy to the setting
of learning distributions generated by PDFA and showed PAC-learning results
parametrized by the distinguishability of the target distribution. The distin-
guishability parameter can sometimes be exponentially small in the number of
states in a PDFA. However, there exists reasonable evidence suggesting that
polynomiality in the number of states alone may not be achievable (Kearns
et al (1994); Terwijn (2002)); in particular, the problem is at least as hard
as the noisy parity learning problem for which, despite remarkable effort, only
exponential-time algorithms are known.

2.4 The Data Stream Framework

The data stream computation model has established itself in the last fifteen
years for the design and analysis of algorithms on high-speed sequential data
(Aggarwal, 2007). It is characterized by the following assumptions:

1. The input is a potentially infinite sequence of items x1, x2, . . . , xt, . . . from
some (large) universe X.

2. Item xt is available only at the tth time step and the algorithm has only
that chance to process it, say by incorporating it to some summary or
sketch; that is, only one pass over the data is allowed.

3. Items arrive at high-speed, so the processing time per item must be very
low – ideally constant time, but most likely logarithmic in t and |X|.

4. The amount of memory used by algorithms (the size of the sketches alluded
above) must be sublinear in the data seen so far at every moment; ideally,
at time t memory must be polylogarithmic in t – for many problems, this is
impossible and memory of the form tc for constant c < 1 may be required.
Logarithmic dependence on |X| is also desirable.

5. Anytime answers are required, but approximate, probabilistic ones are
often acceptable.

A large fraction of the data stream literature discusses algorithms working
under worst-case assumptions on the input stream, e.g. compute the required

5

(approximate) answer at all times t for every possible values of x1, . . . , xt (Lin
and Zhang, 2008; Muthukrishnan, 2005). For example, several sketches exist
to compute an ε-approximation to the number of distinct items in memory
O(log(t|X|)/ε) seen from the stream start until time t. In machine learning and
data mining, this is often not the problem of interest: one is interested in mod-
eling the current “state of the world” at all times, so the current items matter
much more than those from the far past (Bifet, 2010; Gama, 2010). An approach
is to assume that each item xt is generated by some underlying distribution Dt

over X, that varies over time, and the task is to track the distributions Dt

(or its relevant information) from the observed items. Of course, this is only
possible if these distributions do not change too wildly, e.g. if they remain un-
changed for fairly long periods of time (“distribution shifts”, “abrupt change”),
or if they change only very slightly from t to t + 1 (“distribution drift”). A
common simplifying assumption (which, though questionable, we adopt here) is
that successive items are generated independently, i.e. that xt depends only on
Dt and not on the outcomes xt−1, xt−2, etc.

In our case, the universe X will be the infinite set Σ? of all string over a
finite alphabet Σ. Intuitively, the role of log(|X|) will be replaced by a quantity
such as the expected length of strings under the current distribution.

2.5 Related Work

The distributional learning problem is: Given a sample of sequences from some
unknown distribution D, build a model that generates a distribution on se-
quences close to D. Here we concentrate on models which can be generically
viewed as finite-state probabilistic automata, with transitions generating sym-
bols and labeled by probabilities. When the transition diagram of the automaton
is known or fixed, the problem amounts to assigning transition probabilities and
is fairly straightforward. The problem is much harder, both in theory and in
practice, when the transition diagram must be inferred from the sample as well.
Several heuristics have been proposed, mostly by the Grammatical Inference
community for these and related models such as Hidden Markov models (see
(Dupont et al, 2005; Vidal et al, 2005a,b) and references therein).

On the theoretical side, building upon previous work by Ron et al (1998),
Clark and Thollard (2004) gave an algorithm that provably learns the subclass
of so-called Probabilistic Deterministic Finite Automata (PDFA). These are
probabilistic automata whose transition diagram is deterministic (i.e. for each
state q and letter σ there is at most one transition out of q with label σ and pos-
itive probability). These algorithms are based on the state-merging paradigm,
and can be showed to learn in a PAC-like sense (see Section 2.2). The origi-
nal algorithm by Clark and Thollard (2004) was successively refined in several
works (Castro and Gavaldà, 2008; Palmer and Goldberg, 2007; Guttman et al,
2005; Balle et al, 2012b)1. Up to now, the best known algorithms can be shown

to learn the correct structure when they receive a sample of size Õ(n3/ε2µ2),

1The algorithm in Clark and Thollard (2004) and several variants learn a hypothesis ε-
close to the target in the Kullback-Leibler (KL) divergence. Unless noted otherwise, here we
will consider learning PDFA with respect to the less demanding L1 distance. In fact, Clark
and Thollard (2004) learn under the KL divergence by first learning w.r.t. the L1 distance,
then smoothing the transition probabilities of the learned PDFA. This is also possible for our
algorithm.

6

where n is the number of states on the target, µ is a measure of how similar
the states in the target are, and ε is the usual accuracy parameter in the PAC
setting. These algorithms work with memory on this same order and require a
processing time of order Õ(n4/ε2µ2) to identify the structure (and additional
examples to estimate the transition probabilities). Similar results with weaker
guarantees and using very different methods have been given for other classes
of models by Hsu et al (2009).

Unfortunately, known algorithms for learning PDFA (Carrasco and Oncina,
1999; Clark and Thollard, 2004; Hsu et al, 2009) are extremely far from the data
stream paradigm. They all are batch oriented: they perform several passes over
the sample; they need all the data upfront, rather than working incrementally;
they store the whole sample in memory, using linear memory or more; and
they cannot deal with data sources that evolve over time. Recently, algorithms
for online induction of automata have been presented in Schmidt and Kramer
(2012); Schmidt et al (2012); while online (i.e., non-batch) and able to handle
drift, they seem to use memory linear in the sample size and do not come with
PAC-like guarantees.

2.6 Our Contributions

Our first contribution is a new state-merging algorithm for learning PDFA. In
sharp contrast with previous state-merging algorithms, our algorithm works in
the demanding streaming setting: it processes examples in amortized constant
time, uses memory that grows sublinearly with the length of the stream, and
learns by making only one pass over the data. The algorithm uses an adaptative
strategy to perform state similarity tests as soon as enough data is available,
thus accelerating its convergence with respect to traditional approaches based
on worst-case assumptions. Furthermore, it incorporates a variation of the well-
known Space-Saving sketch (Metwally et al, 2005) for retrieving frequent prefixes
in a stream of strings. Our state-merging algorithm uses memory of the order
Õ(n|Σ|/µ), where L is the expected length of strings in the stream. Note in par-
ticular the improvement in the exponent of 1/µ over the batch setting, because
in many cases this quantity can grow exponentially in the number of states, thus
dominating the bounds above. Furthermore, we show that the expected number
of examples read until the structure is identified is Õ(n2|Σ|2/εµ2) (note that the
bounds stated in the previous section are worst-case, with probability 1− δ).

Building on top of this algorithm, we present our second contribution: a
search strategy for learning the target’s parameters coupled with a change de-
tector. This removes the highly impractical need to guess target parameters
and revising them as the target changes. The parameter search strategy lever-
ages memory usage in the state-merging algorithm by enforcing an invariant
that depends on the two relevant parameters: number of states n and state
distinguishability µ.

A delicate analysis of this invariant based on the properties of our state-
merging algorithm yields sample and memory bounds for the parameter-free
algorithm. These bounds reveal a natural trade-off between memory usage
and number of samples needed to find the correct parameters in our search
strategy, which can be adjusted by the user according to their time vs. memory
priorities. For a particular choice of this parameter, we can show that this
algorithm uses memory that grows like Õ(t3/4) with the number t of processed

7

examples, whether or not the target is generated by PDFA. If the target is
one fixed PDFA, the expected number of examples the algorithm reads before
converging is Õ(n4|Σ|2/εµ2). Note that the memory usage grows sublinearly in
the number of examples processed so far, while a factor n2 is lost in expected
convergence time with respect to the case where the true parameters of the
target are known in advance.

In summary, we present what is, to our knowledge, the first algorithm for
learning probabilistic automata with hidden states and meeting the restrictions
imposed by the data streaming setting. Our algorithm has rigorous PAC guar-
antees, is capable of adapting to changes in the stream, uses at its core a new ef-
ficient and adaptative state-merging algorithm based on state-of-the-art sketch-
ing components, and is relatively simple to code and potentially scalable. While
a strict implementation of the fully PAC algorithm is probably not practical,
several relaxations are possible which may make it feasible in some applications.

3 A System for Continuous Learning

Before getting into the technicalities of our algorithm for learning PDFA from
data streams, we begin with a general description of a complete learning system
capable of adapting to changes and make predictions about future observations.
In the following sections we will describe the components involved in this system
in detail and prove rigorous time and memory bounds.

The goal of the system is to keep at all times a hypothesis – a PDFA in this
case – that models as closely as possible the distribution of the strings currently
being observed in the stream. For convenience, the hypothesis PDFA will be
represented as two separate parts: the DFA containing the inferred transition
structure, and tables of estimations for transition and stopping probabilities.
Using this representation, the system is able to decouple the state-merging pro-
cess that learns the transition structure of the hypothesis from the estimation
procedure that computes transition and stopping probabilities. This decom-
position is also useful in terms of change detection. Change in transition or
stopping probabilities can be easily tracked with simple sliding window or de-
caying weights techniques. On the other hand, changes in the structure of a
PDFA are much harder to detect, and modifying an existing structure to adapt
to this sort of changes is a very challenging problem. Therefore, our system con-
tains a block that continually estimates transition and stopping probabilities,
and another block that detects changes in the underlying structure and triggers
a procedure that learns a new transition structure from scratch. A final block
that uses the current hypothesis to make predictions about the observations in
the stream (more in general, decide actions on the basis of the current model)
can also be integrated into the system. Since this block will depend on the
particular application, it will not be discussed further here. The structure we
just described is depicted in Figure 1.

The information flow in the system works as follows. The structure learning
block – containing a state-merging algorithm and a parameter search block
in charge of finding the correct n and µ for the target – is started and the
system waits until it produces a first hypothesis DFA. This DFA is fed to the
probability estimation block and the change detector. From now on, these two
blocks run in parallel, as well as the learning block, which keeps learning new

8

Stream

Estimator

Change Detector

Predictor

Parameter Search

Learning
Algorithm

Hypothesis

Predictions

Figure 1: System for Continuous Learning from Data Streams

structures with more refined parameters. If at some point a change in the
target structure is found, a signal is emitted and the learning block restarts the
learning process.2 In parallel, the estimator block keeps updating transition and
stopping probabilities all the time. It may be the case that this latter parameter
adaptation procedure is enough to track the current distribution. However, if
the structure learning procedure produces a new DFA, transition probabilities
are estimated for this new structure, which then takes the place of the current
hypothesis. Thus, the system will recover much faster from a change that only
affects transition probabilities, than from a change in the structure of the target.

3.1 Example: Application to Click Prediction in On-line
Stores

Let us present a scenario that illustrates the functioning of such a learning
system. Although not intended to guide our research in the rest of the paper, it
may help understanding the challenges it faces and the interactions among its
parts.

Consider an on-line store where customers navigate through a collection
of linked pages to browse the store catalog and product pages, check current
offers, update their profiles, edit their cart contents, proceed to checkout and
payment, ask for invoices, etc. Web administrators would like to model customer
behavior for a number of reasons, including: classifying customers according to
their intention to purchase, predicting the next visited page for prefetching or
caching, detecting when a customer is lost or not finding what s/he wants,
reorganizing the pages for higher usability, etc. A natural and useful customer
model for such tasks is one that models the distribution of “sessions”, or user
visits, the sequence of pages visited by the user – hence the set of pages forms
a finite alphabet; we make this simplification for the rest of the discussion,

2Here one has a choice of keeping the current parameters in or restarting them to some
initial values; previous knowledge on the changes the algorithm will be facing can help to
make an informed decision in this point.

9

although page requests may have parameters, the user may click on a specific
object of a page (e.g., a button), etc.

An easy way of defining a generative model in this case is to take the set
of pages as a set of states, and connect pages i and j by a transition with the
empirical probability that user moves to page j when in page i. In this case, the
state is fully observable, and building such an automaton from a log of recorded
sessions is trivial. This is in essence the model known as Customer Behavior
Model Graphs (Menascé et al, 1999), often used in customer analytics and
website optimization. A richer model should try to capture the non-observable
user state, e.g., his/her mood, thought, or intention, beyond the page that s/he
is currently looking at. In this case, a probabilistic state machine with hidden
state is more adequate, if one accepts the hypothesis that a moderate number
of states may suffice to explain a useful part of the users’ behaviors. In this
case, the structure of such a hidden machine is unknown as well and inferring
it from a session log is the learning problem we have been discussing.

More importantly, user behavior may clearly evolve over time. Some of the
changes may be attributed to the web itself: the administrator may change the
connections among pages (e.g. to make some more prominent or accessible), or
products may be added or removed from the catalog; these will tend to create
sudden changes in the behavior, affecting often the structure of the inferred
machine. Others may be due to the users’ changing their behaviors, such as
some products in this site’s catalog becoming more or less fashionable or the
competition changing their catalog or prices; these changes may preserve the
structure or the machine or not, and be gradual or sudden. If the system is to
keep an accurate and useful model of user behavior, it must be ready to detect
all changes from the continuous clickstream arriving at the website and react or
relearn appropriately.

4 State-merging in Data Streams

In this section we present an algorithm for learning distributions over strings
from a data stream. The algorithm learns a PDFA by adaptively performing
statistical tests in order to discover new states in the automata and merge similar
states. We focus on the state-merging aspect of the algorithm, which is in charge
of obtaining the transition structure between states. This stage requires the use
of sketches to store samples of the distribution generated from each state in
the PDFA, and a testing sub-routine to determine whether two states are equal
or distinct based on the information contained in these sketches. We give two
specific sketches and a test in Section 5 and Appendix A.3, respectively. Here
we will just assume that components respecting certain bounds are used and
state the properties of the algorithm under those assumptions. After finding
the transition structure between states, a second stage in which transition and
stopping probabilities are estimated takes place. For deterministic transition
graphs the implementation of this stage is routine and will not be discussed
here.

The algorithm will read successive strings over Σ from a data stream and,
after some time, output a PDFA. Assuming all the strings are drawn according
to a fixed distribution generated from a PDFA, we will show that then the
output will be accurate with high probability.

10

We begin with an informal description of the algorithm, which is comple-
mented by the pseudocode in Algorithm 1. The algorithm follows a structure
similar to other state-merging algorithms, though here tests to determine simi-
larity between states are performed adaptively as examples arrive.

Our algorithm requires some parameters as input: the usual accuracy ε and
confidence δ, a finite alphabet Σ, a number of states n and a distinguishabil-
ity µ. Some quantities defined in terms of these parameters that are used in the
algorithm are given in Table 1. Specifically, quantities α0 and α (respectively, β0

and β) define milestones for similarity tests (insignificance tests, see below), θ is
used to fix insignificance thresholds and 1−δi values define confidence thresholds
for the tests.

The algorithm, called StreamPDFALearner, reads data from a stream of
strings over Σ. At all times it keeps a hypothesis represented by a DFA. States
in the DFA are divided into three kinds: safe, candidate, and insignificant states,
with a distinguished initial safe state denoted by qλ. Candidate and insignificant
states have no out-going transitions. To each string w ∈ Σ? we may be able
to associate a state by starting at qλ and successively traversing the transitions
labeled by the symbols of w in order. If all transitions are defined, the last state
reached is denoted by qw, otherwise qw is undefined – note that it is possible
that different strings w and w′ represent the same state q = qw = qw′ .

For each state q in its current DFA, StreamPDFALearner keeps a multiset
Sq of strings. These multisets grow with the number of strings processed by the
algorithm and are used to keep statistical information about a distribution Dq.
In fact, since the algorithm only needs information from frequent prefixes in the
multiset, it does not need to keep the full multiset in memory. Instead, it uses
sketches to keep the relevant information for each state. We use Ŝq to denote

the information contained in these sketches associated with state q, and |Ŝq| to
denote the number of strings inserted into the sketch associated with state q.

Execution starts from a DFA consisting of a single safe state qλ and several
candidate states qσ, one for each σ ∈ Σ. All states start with an empty sketch.
Each element xt in the stream is then processed in turn: for each prefix w of
xt = wz that leads to a state qw in the DFA, the corresponding suffix z is added
to that state’s sketch Ŝqw . During this process, similarity and insignificance
tests are performed on candidate states following a certain schedule; the former
are triggered by the sketch’s size reaching a certain threshold, while the latter
occur at fixed intervals after the state’s creation. In particular, t0q denotes the

time state q was created, tsq is a threshold on the size |Ŝq| that will trigger the
next round of similarity tests for q, and tuq is the time the next insignificance test
will occur. Parameter iq keeps track of the number of similarity tests performed
for state q; this is used to adjust the confidence parameter in those tests.

Insignificance tests are used to check whether the probability that a string
traverses an arc reaching a particular candidate state is below a certain thresh-
old; it is known that these transitions can be safely ignored when learning a
PDFA in the PAC setting (Clark and Thollard, 2004; Palmer and Goldberg,
2007). Similarity tests use statistical information provided by the candidate’s
sketch to determine whether it equals some already existing safe state or it is
different from all safe states in the DFA. These tests can return three values:
equal, distinct, and unknown. These answers are used to decide what to do
with the candidate currently being examined.

11

A candidate state will exist until it is promoted to safe, merged to another
safe state, or declared insignificant. When a candidate is merged to a safe state,
the sketches associated with that candidate are discarded. The algorithm will
end whenever there are no candidates left, or when the number of safe states
surpasses the limit n given by the user.

An example execution of algorithm StreamPDFALearner is displayed in Fig-
ure 2. In this figure we see the evolution of the hypothesis graph, and the effect
the operations promote, merge, and declare insignificant have on the hypothesis.

4.1 Analysis

Now we proceed to analyze the StreamPDFALearner algorithm. We will consider
memory and computing time used by the algorithm, as well as accuracy of the
hypothesis produced in the case when the stream is generated by a PDFA.
Our analysis will be independent of the particular sketching methodology and
similarity test used in the algorithm. In this respect, we will only require that
the particular components used in StreamPDFALearner to that effect satisfy the
following assumptions with respect to bounds Msketch, Tsketch, Ttest, Nunknown,
and Nequal which are themselves functions of the problem parameters.

Assumption 1. Algorithms Sketch and Test algorithm used in StreamPDFALearner

satisfy the following:

1. Each instance of Sketch uses memory at most Msketch

2. A Sketch.insert(x) operation takes time Tsketch

3. Any call Test(Ŝ, Ŝ′, δ) takes time at most Ttest

4. There exists a Nunknown such that if |Ŝ|, |Ŝ′| ≥ Nunknown, then a call
Test(Ŝ, Ŝ′, δ, µ) will never return unknown

5. There exists a Nequal such that if a call Test(Ŝ, Ŝ′, δ, µ) returns equal,

then necessarily |Ŝ| ≥ Nequal or |Ŝ′| ≥ Nequal

6. When a call Test(Ŝ, Ŝ′, δ) returns either equal or distinct, then the
answer is correct with probability at least 1− δ.

Our first result is about memory and number of examples used by the algo-
rithm. We note that the result holds for any stream of strings for which Sketch

and Test satisfy Assumptions 1, not only those generated by a PDFA.

Theorem 4.1. The following hold for any call to StreamPDFALearner(n,Σ, ε, δ, µ):

1. The algorithm uses memory O(n|Σ|Msketch)

2. The expected number of elements read from the stream is O(n2|Σ|2Nunknown/ε)

3. Each item xt in the stream is processed in O(|xt|Tsketch) amortized time

4. If a merge occured, then at least Nequal elements were read from the stream

12

Algorithm 1: StreamPDFALearner procedure

Input: Parameters n,Σ, ε, δ, µ, Sketch, Test
Data: A stream of strings x1, x2, . . . ∈ Σ?

Output: A hypothesis H

initialize H with safe qλ and let Ŝqλ be a new, empty Sketch;
foreach σ ∈ Σ do

add a candidate qσ to H and let Ŝqσ be a new, empty Sketch;
t0qσ ← 0, tsqσ ← α0, tuqσ ← β0, iqσ ← 1;

foreach string xt in the stream do
foreach decomposition xt = wz, with w, z ∈ Σ? do

if qw is defined then

Ŝqw .insert(z);

if qw is a candidate and |Ŝqw | ≥ tsqw then
foreach safe qw′ not marked as distinct from qw do

Call Test(Ŝqw , Ŝq′w , δiqw , µ);
if Test returned equal then merge qw to qw′ ;
else if Test returned distinct then mark qw′ as
distinct from qw;
else tsqw ← α · tsqw , iqw ← iqw + 1;

if qw is marked distinct from all safes then
promote qw to safe;
foreach σ ∈ Σ do

add a candidate qwσ to H and let Ŝqwσ be a new,
empty Sketch;
t0qwσ ← t, tsqwσ ← α0, tuqwσ ← t+ β0, iqwσ ← 1;

foreach candidate q do
if t ≥ tuq then

if |Sq| < θ · (t− t0q) then declare q insignificant;

else tuq ← tuq + β;

if H has more than n safes or there are no candidates left then
return H;

13

α0 = 128
}

Milestones for significance testing
α= 2

β0 = (64n|Σ|/ε) ln(2/δ′)
}

Milestones for similarity testing
β= (64n|Σ|/ε) ln 2

θ= (3ε)/(8n|Σ|)
}

Insignificance threshold

δ′= δ/(2|Σ|n(n+ 2))
}

Confidence parameters
δi = 6δ′/π2i2

Table 1: Definitions used in Algorithm 1

14

qλ qa

qb

a

b

(a) qa promoted to safe

qλ qa

qb

a

b

qaa

qab

a

b

(b) qab declared insignificant

qλ qa

qb

a

b

qaa
a

(c) qb promoted to safe

qλ qa

qb

a

b

qaa
a

qba

qbb

a

b

(d) qaa merged to qa

qλ qa

qb

a

b

qba

qbb

a

b

a

(e) qba declared insignificant

qλ qa

qb

a

b

qbb

b

a

(f) qbb merged to qa

qλ qa

qb

a

b

a

b

(g) Final hypothesis

Figure 2: Example run of StreamPDFALearner with Σ = {a, b}. Safe states
are represented by circle nodes. Candidate states are represented with square
nodes. States declared insignificant are not represented. Shaded nodes mark
the candidate node on which some operation is performed at each step. Observe
that after step (e) we have qa = qak for every k ≥ 1.

15

Proof. The memory bound follows from the fact that at any time there will be
at most n safe states in the DFA, each with at most |Σ| candidates attached,
yielding a total of n(|Σ|+1) states, each with an associated sketch using memory
Msketch. By assumption, a candidate state will be either promoted or merged
after collecting Nunknown examples, provided that every safe state in the DFA
has also collected Nunknown examples. Since this only matters for states with
probability at least ε/4n|Σ| because the rest of the states will be marked as
insignificant (see Lemma 4.4), in expectation the algorithm will terminate after
reading O(n2|Σ|2Nunknown/ε) examples from the stream. The time for process-
ing each string depends only on its length: suffixes of string xt will be inserted
into at most |xt|+ 1 states, at a cost Tsketch per insertion, yielding a total pro-
cessing time of O(|xt|Tsketch). It remains, though, to amortize the time used
by the tests among all the examples processed. Any call to Test will take time
at most Ttest. Furthermore, for any candidate state, time between successive
tests grows exponentially; that is, if t strings have been added to some Ŝq, at

most O(log t) tests on Ŝq have taken place due to the scheduling used. Thus,
taking into account that each possible candidate may need to be compared to
every safe state during each testing round, we obtain an expected amortized
processing time per string of order O(|xt|Tsketch + n2|Σ|Ttest log(t)/t). Finally,
note that for a merge to occur necessarily some call to Test must return equal,
which means that at least Nequal have been read from the stream.

We remark here that Item 3 above is a direct consequence of the scheduling
policy used by StreamPDFALearner in order to perform similarity tests adapta-
tively. The relevant point is that the ratio between executed tests and processed
examples is O(log(t)/t). In fact, by performing tests more often while keeping
the tests/examples ratio tending to 0 as t grows, one could obtain an algorithm
that converges slightly faster, but has a larger (though still constant with t)
amortized processing time per item.

Our next theorem is a PAC-learning result. It says that if the stream is gen-
erated by a PDFA then the resulting hypothesis will have small error with high
probability when transition probabilities are estimated with enough accuracy.
Procedures to perform this estimation have been analyzed in detail in the liter-
ature. Furthermore, the adaptation to the streaming setting is straightforward.
We use an analysis from (Palmer, 2008) in order to prove our theorem.

Theorem 4.2. Suppose a stream generated from a PDFA D with n states and
distinguishability µ is given to StreamPDFALearner(n′,Σ, ε, δ, µ′) with n′ ≥ n
and µ′ ≤ µ. Let H denote the DFA returned by StreamPDFALearner and
D̂H a PDFA obtained from H by estimating its transition probabilities using
Õ(n4|Σ|4/ε3) examples. Then with probability at least 1−δ we have L1(D, D̂H) ≤
ε.

The proof of Theorem 4.2 is similar in spirit to other in (Clark and Thollard,
2004; Palmer and Goldberg, 2007; Castro and Gavaldà, 2008; Balle et al, 2012b).
Therefore, we only discuss in detail those lemmas involved in the proof which
are significantly different from the batch setting. In particular, we focus on
the effect of the adaptive test scheduling policy. The rest of the proof is quite
standard: first show that the algorithm recovers a transition graph isomorphic
to a subgraph of the target containing all relevant states and transitions, and
then bound the overall error in terms of the error in transition probabilities. We

16

note that by using a slightly different notion of insignificant state and applying
a smoothing operation after learning a PDFA, our algorithm could also learn
PDFA under the more strict KL divergence.

The next two lemmas establish the correctness of the structure recovered:
with high probability, merges and promotions are correct, and no significant
candidate state are marked as insignificant.

Lemma 4.3. With probability at least 1−n(n+ 1)|Σ|δ′, all transitions between
safe states are correct.

Proof. We will inductively bound the error probability of a merge or promotion
by assuming that all the previous ones were correct. If all merges and promotions
performed so far are correct, there is a transition-preserving bijection between
the safe states in H and a subset of states from target AD; therefore, for each
safe state q the distribution of the strings added to Ŝ is the same as the one in
the corresponding state in the target. Note that this also holds before the very
first merge or promotion.

First we bound the probability that the next merge is incorrect. Suppose
StreamPDFALearner is testing a candidate q and a safe q′ such that Dq 6= Dq′

and decides to merge them. This will only happen if, for some i ≥ 1 a call
Test(Ŝq, Ŝq′ , δi) returns equal. By Assumption 1, for fixed i this happens with
probability at most δi; hence, the probability of this happening for some i is at
most

∑
i δi, and this sum is bounded by δ′ because of the fact that

∑
i≥1 1/i2 =

π2/6. Since there are at most n safe states, the probability of next merge being
incorrect is at most nδ′.

Next we bound the probability that next promotion is incorrect. Suppose
that we promote a candidate q to safe but there exists a safe q′ with Dq = Dq′ .
In order to promote q to safe the algorithm needs to certify that q is distinct
from q′. This will happen if a call Test(Ŝq, Ŝq′ , δi) return distinct for some i.
But again, this will happen with probability at most

∑
i δi ≤ δ′.

Since a maximum of n|Σ| candidates will be processed by the algorithm, the
probability of an error in the structure is at most n(n+ 1)|Σ|δ′.

Following Palmer and Goldberg (2007), we say a state in a PDFA is in-
significant if a random string passes through that state with probability less
than ε/2n|Σ|; the same applies to transitions. It can be proved that a subgraph
from a PDFA that contains all its non-insignificant states and transitions fails
to accept a set of strings accepted by the original PDFA of total probability at
most ε/4.

Lemma 4.4. With probability at least 1 − n|Σ|δ′ no significant candidate will
be marked insignificant and all insignificant candidates with probability less than
ε/4n|Σ| will be marked as insignificant during its first insignificance test.

Proof. First note that when insignificance test for a candidate state q is per-
formed, it means that Tj = (64n|Σ|/ε) ln(2j/δ′) examples have been processed
since its creation, for some j ≥ 1. Now suppose q is a non-insignificant candi-
date, i.e. it has probability more than ε/2n|Σ|. Then, by the Chernoff bounds,
we have |Ŝq|/Tj < 3ε/8n|Σ| with probability at most δ′/2j . Thus, q will be
marked as insignificant with probability at most δ′. On the other hand, if q has

17

probability less than ε/4n|Σ|, then |Ŝq|/T1 > 3ε/8n|Σ| happens with probabil-
ity at most δ′/2. Since there will be at most n|Σ| candidates, the statement
follows by the union bound.

Though the algorithm would be equally correct if only a single insignificance
test was performed for each candidate state, the scheme followed here ensures
the algorithm will terminate even when the distribution generating the stream
changes during the execution and some candidate that was significant w.r.t. the
previous target is insignificant w.r.t. to the new one.

With the results proved so far we can see that, with probability at least 1−
δ/2, the set of strings in the support of D not accepted by H have probability at
most ε/4 w.r.t. DT . Together with the guarantees on the probability estimations
of D̂H provided by Palmer (2008), we can see that with probability at least 1−δ
we have L1(D, D̂H) ≤ ε.

Structure inference and probability estimation are presented here as two
different phases of the learning process for clarity and ease of exposition. How-
ever, probabilities could be incrementaly estimated during the structure infer-
ence phase by counting the number of times each arc is used by the examples
we observe in the stream, provided a final probability estimation phase is run
to ensure that probabilities estimated for the last added transitions are also
correct.

5 Sketching Distributions over Strings

In this section we describe two sketches that can be used by our state-merging
algorithm in data streams. The basic building block of both is the Space-
Saving algorithm Metwally et al (2005). By using it directly, we provide an
implementation of StreamPDFALearner that learns with respect to the L∞-
distinguishability of the target PDFA. By extending it to store information
about frequent prefixes, and a more involved analysis, we obtain instead learning
with respect to the Lp

∞-distinguishability. This information will then be used to
compute the statistics required by the similarity test described in Appendix A.3.

We begin by recalling the basic properties of the Space-Saving sketch intro-
duced in Metwally et al (2005).

Given a number K, the Space-Saving sketch SpSv(K) is a data structure that
uses memory O(K) for monitoring up to K “popular” items from a potentially
huge domain X. The set of monitored items may vary as new elements in the
input stream are processed. In essence, it keeps K counters. Each counter
ci keeps an overestimate of the frequency f(xi) in the stream of a currently
monitored item xi. The number of stream items processed at any given time,
denoted as m from now on, equals both

∑
i=1...K ci and

∑
x∈X f(x). Two

operations are defined on the sketch: the insertion operation that adds a new
item to the sketch, and the retrieval operation that returns a ordered list of
pairs formed by items and estimations.

The insertion operation is straightforward. If the item x to be inserted is
already being monitored as xi, the corresponding counter ci is incremented.
Else, if there are less than K items being monitored, x is added with count 1.
Otherwise, the monitored item xM having the smallest associated cM is replaced

18

count = 1

str = ‘aa’

count = 3 count = 4

str = ‘b’ str = ‘a’

str = ‘ba’

‘a’ ‘b’

...

...
Hash
Table

Doubly Linked
List

Linked
List

Figure 3: Conceptual representation of the Space-Saving data structure.

with x. The associated counter is incremented by 1, so in general it will now
hold an overestimate of f(x). This operation takes time O(1).

The retrieval operation has a parameter ε ≥ 1/K, takes time O(1/ε) and
returns at time t a set of at most K pairs of the form (x, cx). The key properties
of the sketch are: 1) This set is guaranteed to contain every x such that f(x) ≥
ε · t, and 2) For each (x, cx) in the set, 0 ≤ cx − f(x) ≤ t/K. Claim 1) is shown
as follows: Suppose x is not in the sketch at time t. If it was never in the sketch,
then f(x) = 0 and we are done. Otherwise, suppose x was last removed from
the sketch at time t′ < t, and let c be its associated count at that moment.
Since c was the smallest of K counts whose sum was t′, we have cK ≤ t′. Hence
f(x) ≤ c ≤ t′/K < t/K ≤ ε · t. The proof of Claim 2) is similar.

An accurate description of a data structure with these requirements is given
in Metwally et al (2005); we only outline it here. It consists of several linked
list at two levels. At the first one, there is an ordered doubly linked list of
buckets, each bucket being labeled by a distinct estimation value of monitored
examples. At the second level, for each bucket there is a linked list representing
monitored examples whose estimation corresponds to the bucket label. There
are additional links leading from each represented example to its bucket and
every bucket points to exactly one item among its child list. Finally, items are
stored in a convenient structure, such as a hash table or associative memory,
that guarantees constant access cost given the item. Figure 3 gives a simple
example of this data structure.

Let us first analyze the direct use of SpSv to store information about the
sample of strings reaching any given state. We first bound the error introduced
by the sketch on the empirical L∞ distance between the “exact” empirical dis-
tribution corresponding to a sample S and its sketched version, which we denote
by Ŝ. By the property of the sketch shown above, the following is easily seen
to hold:

Lemma 5.1. Let S = (x1, . . . , xm) be a sequence of examples and Ŝ a SpSv(K)
sketch where each element of S has been inserted. Then L∞(S, Ŝ) ≤ 1/K.

Consider now an implementation of StreamPDFALearner that places a sketch
as above with K = 8/µ in every safe or candidate state, and uses the Test

described in Appendix A.3. By Lemma 5.1, L∞(S, Ŝ) ≤ µ/8 so the conditions of

19

Lemma A.6 in the appendix are satisfied. This pair of Sketch and Test satisfy
all Assumptions 1 with Msketch = O(1/µ), Tsketch = O(1), Ttest = O(1/µ),

Nunknown = Õ(1/µ2), and Nequal = Õ(1/µ2). Applying Theorems 4.1 and 4.2
we have:

Corollary 5.2. There are implementations of Test and Sketch such that StreamPDFALearner
will PAC-learn streams generated by PDFA with n states and L∞-distinguishability
µ using memory O(n|Σ|/µ), reading Õ(n2|Σ|2/εµ2 +n4|Σ|4/ε3) examples in ex-
pectation, and processing each stream element x in time O(|x|).

Next, we propose a variant of the sketch useful for learning with respect to
the Lp

∞-distinguishability rather than the L∞ one, whose analysis is substan-
tially more involved. The sketch has to be modified to retrieve frequent prefixes
from a stream of strings rather than the strings themselves. A first observation
is that whenever we observe a string x of length |x| in the stream, we should
insert |x| + 1 prefixes to the sketch. This is another way of saying that under
a distribution D over Σ? events of the form xΣ? and yΣ? are not independent
when x is a prefix of y. In fact, it can be shown that

∑
xD(xΣ?) = L+1, where

L =
∑
x |x|D(x) is the expected length of D (Clark and Thollard, 2004). In

practice, a good estimate for L can be easily obtained from an initial fraction
of the stream, so we assume it is known. It is easy to see that a Space-Saving
sketch with O(K L) counters can be used to retrieve prefixes with relative fre-
quencies larger than some ε ≥ 1/K and approximating these frequencies with
error at most O(1/K). When computing relative frequencies, the absolute fre-
quency obtained via a retrieval operation needs to be divided by the number of
strings added to the sketch so far (instead of the number of prefixes).

We encapsulate all this behavior into a Prefix-Space-Saving sketch SpSvp(K),
which is basically a Space-Saving sketch with K counters where when one string
is inserted, each proper prefix of the string is inserted into the sketch as well.
A string x is processed in time O(|x|). Such a sketch can be used to keep
information about the frequent prefixes in a stream of strings, and the informa-
tion in two Prefix-Space-Saving sketches corresponding to streams generated by
different distributions can be used to approximate their Lp

∞ distance.
We now analyze the error introduced by the sketch. As before, S and Ŝ

denote the “exact” empirical distribution and its approximate version derived
from the sketch. Fix K > 0. Given a sequence S = (x1, . . . , xm) of strings
from Σ?, for each prefix x ∈ Σ? we denote by Ŝ[xΣ?] the absolute frequency
returned for prefix x by a Prefix-Space-Saving sketch SpSvp(K) that received

S as input; that is, Ŝ[xΣ?] = f̂x if the pair (x, f̂x) was returned by a retrieval
query with ε = 1/K, and Ŝ[xΣ?] = 0 otherwise. Furthermore, Ŝ(xΣ?) denotes
the relative frequency of the prefix x in Ŝ: Ŝ(xΣ?) = Ŝ[xΣ?]/m. The following
result analyzes the maximum of the differences |Ŝ(xΣ?)− S(xΣ?)|.

Lemma 5.3. Let S = (x1, . . . , xm) be a sequence of i.i.d. examples from a
PDFA D and Ŝ a SpSvp(K) sketch where each element of S has been inserted.
Then for some cD depending on D only and with probability at least 1 − δ the
following holds:

Lp
∞(S, Ŝ) ≤ L+ 1

K
+

√
32e2

mK2c2D
ln

(
1

δ

)
.

20

The proof is given in Appendix A.2. We will apply Lemma 5.3 to each state q
of the target PDFA; let cD(q) be the constant cD provided by the lemma for the
distribution generated at q, and let κ be the smallest cD(q); one can view κ as
property of the PDFA measuring some other form of its complexity. Similarly,
let Lmax be the largest among the expected lengths of strings generated from
all states in the target PDFA; in particular L ≤ Lmax. Let now µ be a lower
bound on the Lp

∞ distinguishability of the target PDFA, and set

K =
16

µ
·max

{
Lmax + 1,

√
32e2

κ2
ln

(
1

δ

)}
.

The first argument of the max ensures that (L+1)/K ≤ µ/16, and the second ar-
gument in the max and the definition of κ and CD ensure that

√
32e2/(mK2c2D) ≤

µ/16 as well. By Lemma 5.3 this ensures that for every state sketch we have
Lp
∞(S, Ŝ) ≤ µ/8 with high probability for any sample size m ≥ 1. We can apply

then Lemma A.6 in the Appendix, and conclude that this pair of Sketch and
Test satisfy all Assumptions 1 with Nunknown = Õ(1/µ2), Nequal = Õ(1/µ2),

Msketch = Ttest = Õ(max{Lmax, 1/κ}/µ), and Tsketch = O(|x|). Applying The-
orem 4.2 we have:

Corollary 5.4. There are implementations of Test and Sketch such that StreamPDFALearner
will PAC-learn streams generated by PDFA with n states and Lp

∞-distinguishability

µ using memory Õ((n|Σ|/µ) max{Lmax, 1/κ}), reading Õ(n2|Σ|2/εµ2+n4|Σ|4/ε3)
examples in expectation, and processing each stream element x in time O(|x|2).

The algorithm above is supposed to receive as input the quantities Lmax
and κ, or at least upper bounds. To end this section, we note that we can
get rid of Lmax and κ in the corollary above at the price of introducing a
dependence on ε in the amount of memory used by the algorithm. Indeed,
consider the previous implementation of StreamPDFALearner and change it to
use a sketch size that is provably sufficient for keeping accurate statistics for
non-insignificant states, that is, those having probability larger than ε/4n|Σ|,
although perhaps insufficient for insignificant states that generate long strings.
Tests for insignificant states will (with high probability) result neither in merging
nor in promotion, so StreamPDFALearner will not alter its behavior if sketch
size is limited in this way for all states. Indeed, by Lemma A.2 in Appendix
A.1, the constant cD associated to each significant state is at least ε/4n|Σ|L,
and therefore we derive a bound, independent of κ, on the sketch size sufficient
for non-insignificant states, and the total memory used by this implementation
of StreamPDFALearner is Õ(n2|Σ|2L/µε).

6 A Strategy for Searching Parameters

Besides other parameters, a full implementation of StreamPDFALearner, Sketch,
and Test as used in the previous section require a user to guess the number of
states n and distinguishability µ of the target PDFA in order to learn it prop-
erly. These parameters are a priori hard to estimate from a sample of strings.
And though in the batch setting a cross-validation-like strategy can be used to
select these parameters in a principled way, the panorama in a data streams
setting is far less encouraging. This is not only because storing a sample to

21

cross-validate the parameters clashes with the data streams paradigm, but also
because when the target changes over time the algorithm needs to detect these
changes and react accordingly. Here we focus on a fundamental part of this
adaptive behavior: choosing the right n and µ for the current target.

We will give an algorithm capable of finding these parameters by just exam-
ining the output of previous calls to StreamPDFALearner. The algorithm has to
deal with a trade-off between memory growth and time taken to find the correct
number of states and distinguishability. This compromise is expressed by a pair
of parameters given to the algorithm: ρ > 1 and φ > 0. Here we assume that
StreamPDFALearner receives as input just the current estimations for n and
µ. Furthermore, we assume that there exists an unknown fixed PDFA with n?
states and distinguishability µ? which generates the strings in the stream. The
rest of input parameters to StreamPDFALearner – Σ, ε, and δ – are considered
fixed and ignored hereafter. Our goal is to identify as fast as possible (satisfy-
ing some memory constraints) parameters n ≥ n? and µ ≤ µ?, which will allow
StreamPDFALearner to learn the target accurately with high probability. For
the sake of concreteness, and because they are satisfied by all the implementa-
tions of Sketch and Test we have considered, in addition to Assumption 1, we
make the following assumption.

Assumption 2. Given a distinguishability parameter µ for the target PDFA,
algorithms Sketch and Test satisfy Assumption 1 with Msketch = Θ(1/µ) and
Nequal = Θ(1/µ2).

Our algorithm is called ParameterSearch and is described in Figure 2. It
consists of an infinite loop where successive calls to StreamPDFALearner are
performed, each with different parameters n and µ. ParameterSearch tries to
find the correct target parameters using properties from successive hypothesis
produced by StreamPDFALearner as a guide. Roughly, the algorithm increments
the number of states n if more than n states were discovered in the last run,
and decreases distinguishability µ otherwise. However, in order to control the
amount of memory used by ParameterSearch distinguishability needs to be
decreased sometimes even if the last hypothesis’ size exceeded n. This is done
by imposing as invariant to be maintained throughout the whole execution that
n ≤ (1/µ)2φ. This invariant is key to proving the following results.

Theorem 6.1. After each call to StreamPDFALearner where at least one merge
happened, the memory used by ParameterSearch is O(t1/2+φ), where t denotes
the number of examples read from the stream so far.

Proof. First note that, by the choice of ρ′, the invariant n ≤ (1/µ)2φ is main-
tained throughout the execution of ParameterSearch. Therefore, at all times
n/µ ≤ (1/µ)1+2φ ≤ (1/µ2 + c)1/2+φ for any c ≥ 0. Suppose that a sequence of
k ≥ 1 calls to StreamPDFALearner are made with parameters ni, µi for i ∈ [k].
Write ti for the number of elements read from the stream during the ith call,
and t =

∑
i≤k ti for the total number of elements read from the stream after the

kth call. Now assume a merge occured in the process of learning the kth hypoth-
esis, thus tk = Ω(1/µ2

k) by Theorem 4.1 and Assumption 2. Therefore we have
t1/2+φ = (

∑
i<k ti + Ω(1/µ2

k))1/2+φ = Ω(nk/µk). By Theorem 4.1 the memory
in use after the kth call to StreamPDFALearner is O(nkMsketch) = O(nk/µk).

Note the memory bound does not apply when StreamPDFALearner produces
tree-shaped hypotheses because in that case the algorithm makes no merges.

22

However, if the target is a non-tree PDFA, then merges will always occur. On
the other hand, if the target happens to be tree-shaped, our algorithm will
learn it quickly (because no merges are needed). A stopping condition for this
situation could be easily implemented, thus restricting the amount of memory
used by the algorithm in this situation.

Next theorem quantifies the overhead that ParameterSearch pays for not
knowing a priori the parameters of the target. This overhead depends on ρ and
φ, and introduces a trade-off between memory usage and time until learning.

Theorem 6.2. Assume φ < 1/2. When the stream is generated by a PDFA
with n? states and distinguishability µ?, ParameterSearch will find a correct
hypothesis after making at most O(logρ(n?/µ

2φ
?)) calls to StreamPDFALearner

and reading in expectation at most Õ(n
1/φ
? ρ2+1/φ/µ2

?) elements from the stream.

Proof. For convenience we assume that all n? states in the target are important –
the same argument works with minor modifications when n? denotes the number
of important states in the target. By Theorem 4.2 the hypothesis will be correct
whenever the parameters supplied to StreamPDFALearner satisfy n ≥ n? and
µ ≤ µ?. If nk+1 and µk+1 denote the parameters computed after the kth call
to StreamPDFALearner we will show that nk+1 ≥ n? and µk+1 ≤ µ? for some
k = O(logρ(n?/µ

2φ
?)).

Given a set of k calls to StreamPDFALearner let us write k = k1 + k2 + k3,
where k1, k2 and k3 respectively count the number of times n, µ, or n and µ
are modified after a call to StreamPDFALearner. Now let kn = k1 + k3, kµ =
k2+k3. Considering the first k calls to StreamPDFALearner in ParameterSearch

one observes that nk+1 = ρ1+kn and 1/µk+1 = ρ(1+kµ)/2φ. Thus, from the
invariant nk+1 ≤ (1/µk+1)2φ maintained by ParameterSearch (see the proof of
Theorem 6.1), we see that k1 ≤ k2 must necessarily hold.

Now assume k is the smallest integer such that µk+1 ≤ µ?. By definition of k
we must have µk+1 > µ?/ρ

′, and 1/µk+1 = ρ(1+kµ)/2φ, hence kµ < logρ(1/µ
2φ
?).

Therefore we see that k = k1 + k2 + k3 ≤ 2k2 + k3 ≤ 2kµ < 2 logρ(1/µ
2φ
?). Next

we observe that if µ ≤ µ? and n are fed to StreamPDFALearner then it will
return a hypothesis with |H| ≥ n whenever n < n?. Thus, after the first k calls,
n is incremented at each iteration. Therefore we must have at most logρ n?
additional calls until n ≥ n?. Together with the previous bound, we get a total
of O(logρ(n?/µ

2φ
?)) calls to the learner.

It remains to bound the number of examples used in these calls. Note
that once the correct µ is found, it will only be further decreased in order

to maintain the invariant; hence, 1/µk+1 ≤ ρ1/2φ · max{1/µ?, n1/2φ
? }. Fur-

thermore, if the correct µ is found before the correct n, the latter will never
surpass n? by more than ρ. However, it could happen that n grows more
than really needed while µ > µ?; in this case the invariant will keep µ de-
creasing. Therefore, in the end nk+1 ≤ ρ · max{n?, 1/µ2φ

? }. Note that since

φ < 1/2 we have max{1/µ?, n1/2φ
? } ·max{n?, 1/µ2φ

? } = O(n
1/2φ
? /µ?). Thus, by

Theorem 4.1 we see that in expectation ParameterSearch will read at most

O(n2
k+1Nunknown logρ(n?/µ

2φ
?)) = Õ(n

1/φ
? ρ2+1/φ/µ2

?) elements from the stream.

Note the trade-off in the choice of φ stressed by this result: small values
guarantee little memory usage while potentially increasing the time until learn-

23

ing. A user should tune φ to meet the memory requirements of its particular
system.

Algorithm 2: ParameterSearch algorithm

Input: Parameters ρ, φ
Data: A stream of strings x1, x2, . . . ∈ Σ?

ρ′ ← ρ1/2φ;
n← ρ, µ← 1/ρ′;
while true do

H ← StreamPDFALearner(n, µ);
if |H| < n then µ← µ/ρ′;
else

n← n · ρ;

if n > (1/µ)2φ then µ← µ/ρ′;

7 Detecting Changes in the Target

Now we describe a change detector ChangeDetector for the task of learning
distributions from streams of strings using PDFA. Our detector receives as input
a DFA H, a change threshold γ, and a confidence parameter δ. It then runs until
a change relevant w.r.t. the structure of H is observed in the stream distribution.
This DFA is not required to model the structure of current distribution, though
the more accurate it is, the more sensitive to changes will the detector be. In
the application we have in mind, the DFA will be a hypothesis produced by
StreamPDFALearner.

We define first some new notation. Given a DFA H and a distribution
D on Σ?, D(H[q]Σ?) is the probability of all words visiting state q at least
once. Given a sample from D, we denote by D̂(H[q]Σ?) the relative frequency
of words passing through q in the sample. Furthermore, we denote by D the
vector containing D(H[q]Σ?) for all states q in H, and by D̂ the vector of
empirical estimations.

Our detector will make successive estimations D̂0, D̂1, . . . and decide that
a change happened if some of these estimations differ too much. The rationale
behind this approach to change detection is justified by the next lemma, showing
that a non-negligible difference between D(H[q]Σ?) and D′(H[q]Σ?) implies a
non-negligible distance between D and D′.

Lemma 7.1. If for some state q ∈ H we have |D(H[q]Σ?)−D′(H[q]Σ?)| > γ,
then L1(D,D′) > γ.

Note that the converse is not true, that is there are arbitrarily different
distributions that our test may confuse. An easy counterexample occurs for if
H accepts Σ? with one state; then the distance will be 0 for every D and D′.
Other change detection mechanisms could be added to our scheme.

Proof. First note that L1(D,D′) ≥
∑
x∈H[q],y∈Σ? |D(xy)−D′(xy)|. Then, by tri-

angle inequality this is at least |
∑
x∈H[q],y∈Σ? D(xy)−D′(xy)| = |D(H[q]Σ?)−

D′(H[q]Σ?)| > γ.

24

More precisely, our change detector ChangeDetector works as follows. It
first reads m = (8/γ2) ln(4|H|/δ) examples from the stream and uses them to

estimate D̂0 in H. Then, for i > 0, it makes successive estimations D̂i using
mi = (8/γ2) ln(2π2i2|H|/3δ) examples, until ‖D̂0−D̂i‖∞ > γ/2, at which point
a change is declared.

We will bound the probability of false positives and false negatives in ChangeDetector.
For simplicity, we assume the elements on the stream are generated by a suc-
cession of distributions D0, D1, . . . with changes taking place only between suc-
cessive estimations D̂i of state probabilities. The first lemma is about false
positives.

Lemma 7.2. If D = Di for all i ≥ 0, with probability at least 1− δ no change
will be detected.

Proof. We will consider the case with a single state q; the general case follows
from a simple union bound. Let p = D(H[q]Σ?). We denote by p̂0 an esti-
mation of p obtained with (8/γ2) ln(4/δ) examples, and by p̂i an estimation
from (8/γ2) ln(2π2i2/3δ) examples. Recall that p = E[p̂0] = E[p̂i]. Now, change
will be detected if for some i > 0 one gets |p̂0 − p̂i| > γ/2. If this happens,
then necessarily either |p̂0 − p| > γ/4 or |p̂i − p| > γ/4 for that particular i.
Thus, by Hoeffding’s inequality, the probability of a false positive is at most
P[|p̂0 − p| > γ/4] +

∑
i>0 P[|p̂i − p| > γ/4] ≤ δ.

Next we consider the possiblity that a change occurs but is not detected.

Lemma 7.3. If D = Di for all i < k and |Dk−1(H[q]Σ?) −Dk(H[q]Σ?)| > γ
for some q ∈ H, then with probability at least 1 − δ a change will be detected.
Furthermore, if the change occurs at time t, then it is detected after reading at
most O(1/γ2 ln(γt/δ)) examples more.

Proof. As in Lemma 7.2, we prove it for the case with a single state. The
same notation is also used, with pk = Dk(H[q]Σ?). The statement will not be
satisfied if a change is detected before the kth estimation or no change is detected
immediately after it. Let us assume that |p̂0 − p| ≤ γ/4. Then, a false positive
will occur if |p̂0 − p̂i| > γ/2 for some i < k, which by our assumption implies
|p̂i− p| > γ/4. On the other hand, a false negative will occur if |p̂0− p̂k| ≤ γ/2.
Since |p − pk| > γ, our assumption implies that necessarily |p̂k − pk| > γ/4.
Therefore, the probability that the statement fails can be bounded by

P[|p̂0 − p| > γ/4] +
∑

0<i<k

P[|p̂i − p| > γ/4] + P[|p̂k − pk| > γ/4] ,

which by Hoeffding’s inequality is at most δ.
Now assume the change happened at time t. By Stirling’s approxima-

tion we have t = Θ(
∑
i≤k(1/γ2) ln(k2/δ)) = Θ(k/γ2 ln k/δ). Therefore k =

O(γ2t). If the change is detected at the end of the following window (which
will happen with probability at least 1 − δ), then the response time is at most
O(1/γ2 ln(γt/δ)).

8 Conclusions and Future Work

We have presented an algorithm that learns PDFA in the computationally strict
data stream model, and is able to adapt to changes in the input distribution.

25

It has rigorous PAC-learning bounds on sample size required for convergence,
both for learning its first hypothesis and for adapting after an abrupt change
takes place. Furthermore, unlike other (batch) algorithms for the same task,
it learns unknown target parameters (number of states and distinguishability)
from the stream instead of requiring guesses from the user, and adapts to the
complexity of the target so that it need not use the sample sizes stated by the
worst-case bounds.

We are currently performing synthetic experiments on an initial implemen-
tation to investigate its efficiency bottlenecks. As future work, we would like
to investigate whether the learning bounds can be tightened according to the
observed experimental evidence, and further by relaxing the worst-case, overes-
timating bounds in the tests performed by the algorithm. The bootstrap-based
state-similarity test outlined in Balle et al (2012a) seems very promising in this
respect. It would also be interesting to parallelize the method so that it can
scale to very high-speed data streams.

Acknowledgements

This work was partially supported by MICINN projects TIN2011-27479-C04-03
(BASMATI) and TIN-2007-66523 (FORMALISM), by SGR2009-1428 (LARCA),
and by the EU PASCAL2 Network of Excellence (FP7-ICT-216886). B. Balle
is supported by an FPU fellowship (AP2008-02064) from the Spanish Ministry
of Education.

A preliminary version of this work was presented at the 11th Intl. Conf. on
Grammatical Inference (Balle et al, 2012a). Here we provide missing proofs
and discussions, and extend the results there to streams that evolve over time.
On the other hand, Balle et al (2012a) outlined an efficient state-similarity test
based on bootstrapping. Because it can be used independently of the specific
PDFA learning method discussed here, and the full presentation and analysis
are long, it will be published elsewhere.

References

Aggarwal C (ed) (2007) Data Streams – Models and Algorithms. Springer

Balle B, Castro J, Gavaldà R (2012a) Bootstrapping and learning pdfa in data
streams. In: International colloquium on Grammatical Inference (ICGI)

Balle B, Castro J, Gavaldà R (2012b) Learning probabilistic automata: A study
in state distinguishability. Theoretical Computer Science

Bifet A (2010) Adaptive Stream Mining: Pattern Learning and Mining from
Evolving Data Streams. IOS Press - Frontiers of Artificial Intelligence Series
and Applications

Bousquet O, Boucheron S, Lugosi G (2004) Introduction to statistical learning
theory. Advanced Lectures on Machine Learning

Carrasco RC, Oncina J (1999) Learning deterministic regular grammars from
stochastic samples in polynomial time. Informatique Théorique et Applica-
tions 33(1):1–20

26

Castro J, Gavaldà R (2008) Towards feasible PAC-learning of probabilistic de-
terministic finite automata. In: International colloquium on Grammatical
Inference (ICGI)

Clark A, Thollard F (2004) PAC-learnability of probabilistic deterministic finite
state automata. Journal of Machine Learning Research

Dupont P, Denis F, Esposito Y (2005) Links between probabilistic automata
and hidden markov models: probability distributions, learning models and
induction algorithms. Pattern Recognition

Gama J (2010) Knowledge Discovery from Data Streams. Taylor and Francis

Guttman O, Vishwanathan SVN, Williamson RC (2005) Learnability of proba-
bilistic automata via oracles. In: Conference on Algorithmic Learning Theory
(ALT)

de la Higuera C (2010) Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press

Hsu D, Kakade SM, Zhang T (2009) A spectral algorithm for learning hidden
markov models. In: Conference on Learning Theory (COLT)

Kearns MJ, Mansour Y, Ron D, Rubinfeld R, Schapire RE, Sellie L (1994)
On the learnability of discrete distributions. In: Symposium on Theory of
Computation (STOC)

Lin X, Zhang Y (2008) Aggregate computation over data streams. In: Asian-
Pacific Web Conference (APWeb)

Menascé DA, Almeida VAF, Fonseca R, Mendes MA (1999) A method-
ology for workload characterization of e-commerce sites. In: Proceed-
ings of the 1st ACM conference on Electronic commerce, ACM, New
York, NY, USA, EC ’99, pp 119–128, DOI 10.1145/336992.337024, URL
http://doi.acm.org/10.1145/336992.337024

Metwally A, Agrawal D, Abbadi A (2005) Efficient computation of frequent and
top-k elements in data streams. In: International Conference on Database
Theory (ICDT)

Muthukrishnan S (2005) Data streams: algorithms and applications. Founda-
tions and Trends in Theoretical Computer Science

Palmer N, Goldberg PW (2007) PAC-learnability of probabilistic deterministic
finite state automata in terms of variation distance. Theor Comput Sci

Palmer NJ (2008) Pattern classification via unsupervised learners. PhD thesis,
University of Warwick

Ron D, Singer Y, Tishby N (1998) On the learnability and usage of acyclic
probabilistic finite automata. Journal of Computing Systems Science

Schmidt J, Kramer S (2012) Online induction of probabilistic real time au-
tomata. Data Mining, IEEE International Conference on 0:625–634, DOI
http://doi.ieeecomputersociety.org/10.1109/ICDM.2012.121

27

Schmidt J, Ansorge S, Kramer S (2012) Scalable induction of probabilistic real-
time automata using maximum frequent pattern based clustering. In: Pro-
ceedings of the Twelfth SIAM International Conference on Data Mining, pp
272–283

Terwijn S (2002) On the learnability of hidden markov models. In: Intl. Conf.
on Grammatical Inference (ICGI)

Vershynin R (2012) Introduction to the non-asymptotic analysis of random ma-
trices. In: Eldar Y, Kutyniok G (eds) Compressed Sensing, Theory and Ap-
plications, CUP, chap 5

Vidal E, Thollard F, de la Higuera C, Casacuberta F, Carrasco RC (2005a)
Probabilistic finite-state machines - part I. IEEE Transactions on Pattern
Analysis and Machine Intelligence

Vidal E, Thollard F, de la Higuera C, Casacuberta F, Carrasco RC (2005b)
Probabilistic finite-state machines - part II. IEEE Transactions on Pattern
Analysis and Machine Intelligence

A Technical Results

A.1 Structural Results on PDFA

A real random variable X is sub-exponential if there exists a constant c > 0
such that P[|X| ≥ t] ≤ exp(−ct) holds for all t ≥ 0. The length of the strings
generated by a PFA is always a sub-exponential random variable. Indeed, the
following holds:

Lemma A.1. For any PFA D it holds,

1. There exists a cD such that Px∼D[|x| ≥ t] ≤ exp(−cDt) holds for all t ≥ 0.

2. The expected length of the strings generated by D is at most 1/cD

Proof. We show the first statement. Let n be the number of states of D and
let q be any state. Starting from state q and before generating n new alphabet
symbols, there is a probability ρ > 0 of emitting the final symbol ξ. Thus,

Px∼D[|x| ≥ t] ≤ Px∼D[|x| ≥ bt/ncn] ≤ (1− ρ)bt/nc ≤ exp(−ρbt/nc)

The last statement follows from the first one and from the expectation ex-
pression of a exponential distribution.

The following lemma gives an upper bound on the constant cD in the previ-
ous one for states whose probability is not too small:

Lemma A.2. Let q be a state of the target PDFA with PrD[x visits q] ≥ p.
The the constant cD(q) given by Lemma A.1 for the distribution generated from
state q can be taken to be cD(q) = p/L.

28

Proof. Recall that L = ED[|x|], and let A be the event indicating that a string
x generated from the target distribution D visits q. Then we have Ex∼D[|x|] ≥
PrD[A] · Ex∼D[|x| | A] ≥ p · Ey∼D(q)[|y|]. Hence, Ey∼D(q)[|y|] ≤ L/p. Now
note that for every α > 1 we must have Pry∼D(q)[|y| ≥ αL/p] ≤ 1/α; otherwise
Ey∼D(q)[|y|] > L/p.

As in Lemma A.1, let ρ be the probability that starting from state q and
before generating n new symbols the machine stops. Then

Ey∼D(q)[|y|] =
∑
t

Pr
y∼D(q)

[|y| = t] · t ≥
∑
i≥0

Pr
y∼D(q)

[|y| ∈ [in . . . (i+ 1)n− 1] · i n

≥
∑
i≥0

(1− ρ)iρ · (in) = (
∑
i≥0

(1− ρ)i i ρ) · n = (1− ρ)n/ρ.

We must thus have (1 − ρ)n/ρ ≤ ED(q)[|y|] ≤ L/p, and therefore ρ ≥ n/(1 +
L/p) ∼= np/L. The constant cD can be taken, from the proof of Lemma A.1, to
be cD = ρ/n, therefore cD = p/L suffices.

A.2 Proof of Lemma 5.3

We use Lemma A.1 and the following theorem.

Theorem A.3 (Vershynin (2012)). Let X1, . . . , Xm be i.i.d. sub-exponential
random variables and write Z =

∑m
i=1Xi. Then, for every t ≥ 0, we have

P[Z − E[Z] ≥ mt] ≤ exp

(
− m

8e2
min

{
t2

4c2
,
t

2c

})
, (1)

where c is the sub-exponential constant of variables Xi.

In the first place note that the number of elements inserted into the under-
lying space-saving sketch is M =

∑m
i=1(|xi| + 1). This is a random variable

whose expectation is E[M] = m(L+ 1). We claim that for any x ∈ Σ? we have
|S(xΣ?)− Ŝ(xΣ?)| ≤M/Km. If Ŝ[xΣ?] = 0, that means that S[xΣ?] < M/K,
and therefore the bound holds. On the other hand, the guarantee on the sketch
gives us |S[xΣ?]− Ŝ[xΣ?]|/m ≤M/Km. Now, since Z = M −m is the sum of
m i.i.d. subexponential random variables by Lemma A.1, we can apply Theo-
rem A.1 and obtain

P[Z − E[Z] ≥ mt] ≤ exp

(
− m

8e2
min

{
t2c2D

4
,
tcD
2

})
. (2)

The bound follows from choosing t =
√

(32e2/mc2D) ln(1/δ).

A.3 Similarity Tests

Suppose D and D′ are two arbitrary distributions over Σ?. Let S be sample of m
i.i.d. examples drawn from D and S′ a sample of m′ i.i.d. examples drawn from
D′. For any event A ⊆ Σ? we will use S(A) to denote the empirical probability
of A under sample S, which should in principle be an approximation to the
probability D(A). More specifically, if for any x ∈ Σ? we let S[x] denote the
number of times that x appears in S = (x1, . . . , xm), then

S(A) =
1

m

∑
x∈A

S[x] =
1

m

m∑
i=1

1xi∈A . (3)

29

The sizes of S and S′ will come into play in the statement of several results.
The two following related quantities will be useful:

M = m+m′, and M ′ =
mm′

(
√
m+

√
m′)2

. (4)

The main tool we will use to build similarity tests are confidence intervals.
Suppose dist is a distance measure between probability distributions and let
µ? = dist(D,D′). Fix 0 < δ < 1 to be a confidence parameter. An upper
confidence limit for µ? at confidence level δ computed from S and S′ is a number
µ̂U = µ̂U (S, S′, δ) which for any two distributions D and D′ satisfies µ? ≤ µ̂U
with probability at least 1− δ. Similarly, we define a lower confidence limit µ̂L
satisfying µ̂L ≤ µ? with the same guarantees. Using these two quantities one
can define a confidence interval [µ̂L, µ̂U] which will contain µ? with probability
at least 1− 2δ.

Given a confidence interval [µ̂L, µ̂U] for µ? and a distinguishability parameter
µ it is simple to construct a similarity test as follows. If µ̂U < µ then decide
that D = D′ since we know that (with high probability) µ? < µ which, by the
promise on µ, implies µ? = 0. If µ̂L > 0 then decide that D 6= D′ since we
then know that (with high probability) µ? > 0. If none of the conditions above
hold, then answer unknown. Let D and D′ be two distributions over Σ? with
µ? = Lp

∞(D,D′). Suppose we have access to two i.i.d. samples S and S′ drawn
from D and D′ respectively, where m = |S| and m′ = |S′|. We will use the
empirical estimate µ̂ = dist(S, S′) to determine whether D and D′ are equal or
different. In particular, we will give a confidence interval for µ? centered around
µ̂ for the cases dist = L∞ and dist = Lp

∞.
We use the well-known Vapnik–Chernonenkis inequality :

PS∼Dm [sup
f∈F
|ÊS [f]− ED[f]| > t] ≤ 4ΠF (2m) exp(−mt2/8), (5)

where ΠF is the growth function of class F ; see e.g. Bousquet et al (2004). Note
that in the particular cases we are interested, the distance dist is defined as a
supremum of some absolute diferences. For example, when dist = L∞ we have

L∞(D,D′) = sup
x∈Σ?

|D(x)−D′(x)| = sup
f∈FL∞

|ED[f]− ED′ [f]| , (6)

where FL∞ = {1{x} | x ∈ Σ?} is the set of indicator functions over all singletons
of Σ?. In this case it is immediate to see that ΠFL∞

(m) = m+ 1. In the case of
Lp
∞ distance we have FLp

∞ = {1xΣ? | x ∈ Σ?}. A simple calculation shows that
in this case ΠFL

p
∞

(m) = 2m. Thus, a direct application of Vapnik–Chervonenkis

inequality can be used to proof the following results giving confidence limits for
µ? of the form µ̂ ±∆(δ,m,m′) in the cases dist = L∞ and dist = Lp

∞. For any
0 < δ < 1 let us define

∆(δ,m,m′) =

√
8

M ′
ln

(
16M

δ

)
. (7)

Proposition A.4. Suppose dist = L∞ or dist = Lp
∞. With probability at least

1− δ we have µ? ≤ µ̂+ ∆(δ,m,m′).

30

Proof. Let us write ∆ = ∆(δ,m,m′) for some fixed δ, m, and m′. The re-
sult follows from a standard application of the Vapnik–Chervonenkis inequality
showing that P[µ̂ < µ? −∆] ≤ δ. First note that by the triangle inequality we
have dist(S, S′) ≥ dist(D,D′)− dist(D,S)− dist(D′, S′). Therefore, µ̂ < µ? −∆
implies dist(D,S) + dist(D′, S′) > ∆. Now for any 0 < γ < 1 we have

P[µ̂ < µ? −∆] ≤ P[dist(D,S) + dist(D′, S′) > ∆] ≤
P[dist(D,S) > γ∆] + P[dist(D′, S′) > (1− γ)∆] ≤

16me−mγ
2∆2/8 + 16m′e−m

′(1−γ)2∆2/8 =

16Me−M
′∆2/8 = δ ,

where we choose γ such that mγ2 = m′(1− γ)2.

Proposition A.5. Suppose dist = L∞ or dist = Lp
∞. With probability at least

1− δ we have µ? ≥ µ̂−∆(δ,m,m′).

Proof. The argument is very similar to the one used in Proposition A.4. Write
∆ = ∆(δ,m,m′) for fixed parameters δ as well. We need to see that P[µ? <
µ̂ − ∆] ≤ δ. Since dist(S, S′) ≤ dist(D,D′) + dist(D,S) + dist(D,D′), then
µ? < µ̂ −∆ implies dist(D,S) + dist(D,D′) > ∆. Thus, the conclusion follows
from the same bound we used before.

Let us now describe a specific implementation of the Test used by the
state-merging algorithm. It takes as parameters two sketches Ŝ1, Ŝ2, a lower
bound µ on the dist-distinguishability µ∗ of the target, (for some distance
dist ∈ {L∞,Lp

∞}) and a confidence parameter δ, and performs as follows:

1. let m, m′ be the number of strings inserted in Ŝ1 and Ŝ2, resp.;

2. if ∆(δ,m,m′) > µ/8 then return unknown;

3. else, compute d = maxf∈Fdist
|ÊS1 [f]− ÊS2 [f]|;

4. if d ≤ µ/2 return equal else return distinct.

Lemma A.6. Assume that Sketch is such that for every sample S = {x1, . . . , xm},
dist(S, Ŝ) ≤ µ/8, where Ŝ is the sketched version of S. Then the Sketch and
Test procedures above satisfy Assumptions 1.4, 1.5, 1.6, with both Nunknown and
Nequal of the form Õ(1/µ2).

Proof. For assumption 1.4, note that the test never returns unknown when
∆(δ,m,m′) ≤ µ/8, which is true when m,m′ ≥ Nunknown = Õ(1/µ2). For
Assumption 1.5 follows similarly for Nequal = Õ(1/µ2) as well. For Assumption
1.6, suppose first that µ∗ = 0. By Proposition A.5, with probability 1− δ

d = dist(Ŝ1, Ŝ2) ≤ dist(Ŝ1, S1) +dist(S1, S2) +dist(S2, Ŝ2) ≤ 2(µ/8) +µ/8 < µ/2

so Test will return equal. If, on the other hand, µ∗ ≥ µ, using Proposition A.4
we can argue similarly that

d = dist(Ŝ1, Ŝ2) ≥ dist(S1, S2)−dist(Ŝ1, S1)−dist(S2, Ŝ2) ≥ (µ−µ/8)−2µ/8 > µ/2,

and Test will return distinct. In both cases, the answer is correct with prob-
ability 1− δ.

31

A.4 Lp
∞ versus L∞

It is easy to provide examples of distributions whose Lp
∞ is much larger than

L∞ (Balle et al, 2012b). The next proposition shows that, up to a factor that
depends on the alphabet size, Lp

∞ is always an upper bound for L∞.

Proposition A.7. For any two distributions D and D′ over Σ? we have L∞(D,D′) ≤
(2|Σ|+ 1)Lp

∞(D,D′).

Proof. The inequality is obvious if D = D′. Thus, suppose D 6= D′ and let
x ∈ Σ? be such that 0 < L∞(D,D′) = |D(x) − D′(x)|. Note that for any
partition x = u · v we can write D(x) = Du(v)D(uΣ?). In particular, taking
v = λ, the triangle inequality and D′

x
(λ) ≤ 1 yield the following:

L∞(D,D′) = |D(x)−D′(x)| ≤ |D(xΣ?)−D′(xΣ?)|+D(xΣ?)|Dx(λ)−D′x(λ)| .

Note that |D(xΣ?)−D′(xΣ?)| ≤ Lp
∞(D,D′). It remains to show thatD(xΣ?)|Dx(λ)−

D′
x
(λ)| ≤ 2|Σ|Lp

∞(D,D′).
Observe the following, which is just a consequence of D(λ)+

∑
σD(σΣ?) = 1

for any distribution over Σ?:

Dx(λ) +
∑
σ

Dx(σΣ?) = D′
x
(λ) +

∑
σ

D′
x
(σΣ?) = 1 .

From these equations it is easy to show that there must exists a σ ∈ Σ such
that

|Dx(λ)−D′x(λ)| ≤ |Σ||Dx(σΣ?)−D′x(σΣ?)| .

Therefore, using D(xΣ?)Dx(σΣ?) = D(xσΣ?) we obtain

D(xΣ?)|Dx(λ)−D′x(λ)| ≤ |Σ|D(xΣ?)|Dx(σΣ?)−D′x(σΣ?)|
≤ |Σ||D(xσΣ?)−D′(xσΣ?)|+ |Σ|D′x(σΣ?)|D(xΣ?)−D′(xΣ?)|
≤ 2|Σ|Lp

∞(D,D′) .

32

