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Probabilistic Transducers

» Model input-output relations with hidden states
» As conditional distribution Pr[ y | x| over strings
» With certain independence assumptions

Input

Hidden H,y Hy

Output

» Used in many applications: NLP, biology, . ..
» Hard to learn in general — usually EM algorithm is used
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Spectral Learning Probabilistic Transducers

Our contribution:

» Fast learning algorithm for probabilistic FST

v

With PAC-style theoretical guarantees

v

Based on Observable Operator Model for FST

\4

Using spectral methods (Chang '96, Mossel-Roch *05, Hsu et al. '09,
Siddiq et al. '10)

v

Performing better than EM in experiments with real data
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Deriving Observable Operator Models

Given (x, y) € (X x V)" aligned sequences, model computes
conditional probability (i.e. |x| = |y|)

Priy|x] = > pest Prly, h|x] (marginalize states)
=2 yen PV, Byt | X] (independence assumptions)
=17 Qg1 (vector form, a1 € R™)
=1 TA})g ot (forward-backward equations)
= 1TA};§ e A%} ! (induction on 1)

The choice of an operator A2 depends only on observable symbols
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Observable Operator Model Parameters

Given X ={ay,...,ax}, Y ={b1,....b}, H={cy,...,Cm}, then
Priy|x]=1"TA% .- Al o with parameters:

AL = T, D, € R™™ (factorized operator)
Ta(i,j) = PrlHs = ¢j|Xs_1 = a, Hs_1 = ¢j] € R™" (state transition)
Dp(i,j) = 6;j Pr[Ys = b|Hs = ¢j] € R™™ (observation emission)
O(i,j) = Pr[Ys = bj|Hs = ¢j] € R*™ (collected emissions)

a(i) = Pr[H; = ¢] e R" (initial probabilites)

The choice of an operator A2 depends only on observable symbols . . .

... but operator parameters are conditioned by hidden states
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A Learnable Set of Observable Operators

Note that for any invertible Q € R™*™

Priylx]=1T@7(@A(Q ) (@A Q") Qa

Idea
(subspace identification methods for linear systems, '80s)

Find a basis for the state space such that operators in the new basis
are related to observable quantities

Following multiplicity automata and spectral HMIM learning ...
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A Learnable Set of Observable Operators

Find a basis Q where operators can be expressed in terms of unigram,
bigram and trigram probabilities

p(i) = Pr[Yy = b] e R/
P(i,j) = Pr[Y; = bj, Yo = bj] € R/
P3(i,j) = Pr[Yy = by, Y2 = b, Y3 = bj| Xo = a] € R/

Theorem (p, P and P2 are sufficient statistics)

Let P = USV* be a thin SVD decomposition, then Q = U O yields
(under certain assumptions)

Qa=U"p
1T Q—1 _pT(UTP)+
QA2Q " = (UTPO(UTP)*+
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Spectral Learning Algorithm

Given
» Input X and output ) alphabet
» Number of hidden states m
» Training sample S = {(x",y"),..., (x",y™}
Do
» Compute unigram p, bigram P and trigram ﬁg relative frequencies
in S
» Perform SVD on P and take U with top m left singular vectors
» Return operators computed using p, .‘3, I?’é’ and U
In Time
» O(n) to compute relative frequencies
» O(]Y|®) to compute SVD
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Learning Observable Operator Models

PAC-Style Result

» Input distribution Dy over X* with A\ = E[| X|], © = ming Pr[X> = 4]

» Conditional distributions Dy, on J* given x € A* modeled by an
FST with m states (satisfying certain rank assumptions)

» Sampling i.i.d. from joint distribution Dx Dy x

Theorem
Forany 0 < =, < 1, if the algorithm receives a sample of size
2
n>0 M lo ’X’ (o0 and op are mth singular
- 64 /.L 0,2 0_4 g 5 ) values of O and P in target)
O~ P

then with probability at least 1 — ¢ the hypothesis 5y|x satisfies

(L distance between

o~ Jjoint diistributions
Ex | D [Dyix(n) — Dyixv)|| <= . BB

yey* Dx ® Dy|x)
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Experimental Evaluation

Synthetic Experiments

Goal: Compare against baselines when learning hypothesis hold

Target: Randomly generated with | X| =3, |V| =3, |H| =2

0.7, T T -
+~HMM
06l =k-HMM
~FST
o » HMM: model input-output
§0.4 jointly
B o4 » k-HMM: one model for each
- input symbol
0.2r
r » Results averaged over 5 runs
0.1

92 128 512 2048 8i92 32768
# training samples (in thousands)
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Transliteration Experiments

Goal: Compare against EM in a real task (where modeling assumptions fail)

Task: English to Russian transliteration (brooklyn — 6pyxii)

80

:gg:zg:: m:g Training times
< EM -2 Spectral 26's
: EM (iteration) 37s
EM (best) 1133 s

~
o

D
o

» Sequence alignment done in

normalized edit distance
()]
o

40
preprocessing
80, » Standard techniques used for
sk ‘ ‘ ‘ ‘ ‘ v inference
075 150 350 750 1500 3000 6000 .
# training sequences > Test size: 943, |X| =82, |V| = 34
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Summary of Contributions

\4

Fast spectral method for learning input-output OOM

Strong theoretical guarantees with few assumptions on input
distribution

v

v

Outperforming previous spectral algorithms on FST

Faster and better than EM in some real tasks

\4
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|
Technical Assumptions

X:{317'--7ak}7y:{b'la"'vb/})H:{C1a'-~7cm}

Parameters
a(i,j) = Pr{Hs = ¢j|Xs_1 = @, Hs_1 = ¢j] € R™™ (state transition)
il
T= Za Ta Pr[Xy =g e R™™M (“mean” transition matrix)
O(i,]) = Pr[Ys = bj|Hs = Cj] e R/xm (collected emissions)
a(i) = Pr[H; = ¢] € R™ (initial probabilites)

Assumptions
1. 1>m
2. a>0
3. rank(T) =rank(O) =m
4. mingPr[Xoc =a] >0
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