A Spectral Learning Algorithm for Finite State Transducers La marca es pot traduir a altres idiomes, excepte el nom de la Universitat,

Borja Balle, Ariadna Quattoni, Xavier Carreras

LARCA, Laboratory for Relational Algorithmics, Complexity and Learning UNIVERSITAT POLITÈCNICA DE CATALUNYA

ECML PKDD — September 7, 2011

[Overview](#page-1-0)

Probabilistic Transducers

- \triangleright Model input-output relations with hidden states
- \triangleright As conditional distribution Pr[$y | x$] over strings
- With certain independence assumptions

- \triangleright Used in many applications: NLP, biology, ...
- Hard to learn in general — usually EM algorithm is used

Spectral Learning Probabilistic Transducers

Our contribution:

- \triangleright Fast learning algorithm for probabilistic FST
- \triangleright With PAC-style theoretical guarantees
- Based on Observable Operator Model for FST
- \triangleright Using spectral methods (Chang '96, Mossel-Roch '05, Hsu et al. '09, Siddiqi et al. '10)
- \triangleright Performing better than EM in experiments with real data

[Observable Operators for FST](#page-4-0)

[Learning Observable Operator Models](#page-8-0)

[Experimental Evaluation](#page-10-0)

[Conclusion](#page-12-0)

Deriving Observable Operator Models

Given $(x, y) \in (\mathcal{X} \times \mathcal{Y})^t$ aligned sequences, model computes conditional probability (i.e. $|x| = |y|$)

$$
Pr[y | x] = \sum_{h \in \mathcal{H}^t} Pr[y, h | x]
$$
 (marginalize states)
\n
$$
= \sum_{h_{t+1} \in \mathcal{H}} Pr[y, h_{t+1} | x]
$$
 (independence assumptions)
\n
$$
= 1^{\top} \alpha_{t+1}
$$
 (vector form, $\alpha_{t+1} \in \mathbb{R}^m$)
\n
$$
= 1^{\top} A_{x_t}^{y_t} \alpha_t
$$
 (forward-backward equations)
\n
$$
= 1^{\top} A_{x_t}^{y_t} \cdots A_{x_1}^{y_1} \alpha
$$
 (induction on *t*)

(marginalize states) hdependence assumptions) orward-backward equations) (induction on *t*)

The choice of an operator A^b_a depends only on observable symbols

Observable Operator Model Parameters

Given $\mathcal{X} = \{a_1, \ldots, a_k\}, \mathcal{Y} = \{b_1, \ldots, b_l\}, \mathcal{H} = \{c_1, \ldots, c_m\},$ then $\Pr[\left| y \, \middle| \, x \right] = 1^\top A_{x_t}^{y_t} \cdots A_{x_1}^{y_1} \alpha$ with parameters:

 $A_a^b = T_a D_b \in \mathbb{R}$ *(factorized operator)* $T_a(i,j) = Pr[H_s = c_i | X_{s-1} = a, H_{s-1} = c_j] \in \mathbb{R}$ *(state transition)* $D_b(i,j) = \delta_{i,j}$ Pr[$Y_s = b | H_s = c_j$] $\in \mathbb{R}$ *(observation emission)* $O(i, j) = Pr[Y_s = b_i | H_s = c_j] \in \mathbb{R}$ *^l*×*^m* (collected emissions) $\alpha(i) = Pr[H_1 = c_i] \in \mathbb{R}$ *(initial probabilites)*

The choice of an operator A^b_a depends only on observable symbols \dots

... but operator parameters are conditioned by hidden states

A Learnable Set of Observable Operators

Note that for any invertible $Q \in \mathbb{R}^{m \times m}$

 $Pr[|y|X] = 1^{\top}Q^{-1}(QA_{X_t}^{y_t}Q^{-1})\cdots(QA_{X_1}^{y_1}Q^{-1})Q_{X_t}$

Idea

(*subspace identification methods for linear systems, '80s*)

Find a basis for the state space such that operators in the new basis are related to observable quantities

Following multiplicity automata and spectral HMM learning . . .

A Learnable Set of Observable Operators

Find a basis *Q* where operators can be expressed in terms of unigram, bigram and trigram probabilities

> $\rho(i) = \Pr[Y_1 = b_i] \in \mathbb{R}^d$ $P(i, j) = Pr[Y_1 = b_j, Y_2 = b_i] \in \mathbb{R}^{1 \times i}$ $P_a^b(i,j) = Pr[Y_1 = b_j, Y_2 = b, Y_3 = b_i | X_2 = a] \in \mathbb{R}^{1 \times a}$

Theorem (ρ , P and P_a^b are sufficient statistics) *Let P* = *U*Σ*V* [∗] *be a thin SVD decomposition, then Q* = *U* >*O yields (under certain assumptions)*

$$
Q\alpha = U^{\top}\rho
$$

$$
1^{\top} Q^{-1} = \rho^{\top} (U^{\top} P)^{+}
$$

$$
QA_{a}^{b} Q^{-1} = (U^{\top} P_{a}^{b})(U^{\top} P)^{+}
$$

Spectral Learning Algorithm

Given

- Input $\mathcal X$ and output $\mathcal Y$ alphabet
- ► Number of hidden states *m*
- ▶ Training sample $S = \{(x^1, y^1), \ldots, (x^n, y^n)\}$

Do

- **If** Compute unigram $\widehat{\rho}$, bigram \widehat{P} and trigram \widehat{P} ^b_a relative frequencies in *S*
- **Perform SVD on** \hat{P} **and take** \hat{U} **with top** m **left singular vectors**
- **F** Return operators computed using $\widehat{\rho}$, \widehat{P} , \widehat{P}^b_a and \widehat{U}
Time

In Time

- \triangleright *O(n)* to compute relative frequencies
- \blacktriangleright $O(|\mathcal{Y}|^3)$ to compute SVD

PAC-Style Result

- ► Input distribution D_X over \mathcal{X}^* with $\lambda = \mathsf{E}[|X|]$, $\mu = \min_a \Pr[X_2 = a]$
- ► Conditional distributions $D_{Y|X}$ on \mathcal{Y}^* given $x \in \mathcal{X}^*$ modeled by an FST with *m* states (satisfying certain rank assumptions)
- ^I Sampling i.i.d. from joint distribution *D^X* ⊗ *DY*|*^X*

Theorem

For any 0 < ε, δ < 1*, if the algorithm receives a sample of size*

$$
n \geq O\left(\frac{\lambda^2 m|\mathcal{Y}|}{\varepsilon^4 \mu \sigma_O^2 \sigma_P^4} \log \frac{|\mathcal{X}|}{\delta}\right) , \qquad \text{for all } \sigma_P \text{ are } m\text{th singular} \atop \text{values of } O \text{ and } P \text{ in target}}
$$

then with probability at least 1 $-$ δ *the hypothesis* $D_{Y|X}$ *satisfies*

$$
\mathsf{E}_X\left[\sum_{y\in\mathcal{Y}^*}\left|D_{Y|X}(y)-\widehat{D}_{Y|X}(y)\right|\right]\leq \varepsilon\cdot\max_{D_X\otimes\substack{\text{joint distributions}\\ D_X\otimes\widehat{D}_{Y|X}\\ D_X\otimes\widehat{D}_{Y|X}}}
$$

Synthetic Experiments

Goal: Compare against baselines when learning hypothesis hold

Target: Randomly generated with $|\mathcal{X}| = 3$, $|\mathcal{Y}| = 3$, $|\mathcal{H}| = 2$

- \blacktriangleright HMM: model input-output jointly
- \triangleright *k*-HMM: one model for each input symbol
- Results averaged over 5 runs

Transliteration Experiments

Goal: Compare against EM in a real task (where modeling assumptions fail)

Task: English to Russian transliteration (brooklyn \rightarrow бруклин)

- Sequence alignment done in preprocessing
- \blacktriangleright Standard techniques used for inference
- Test size: 943, $|X| = 82$, $|Y| = 34$

Summary of Contributions

- \triangleright Fast spectral method for learning input-output OOM
- \triangleright Strong theoretical guarantees with few assumptions on input distribution
- Outperforming previous spectral algorithms on FST
- \triangleright Faster and better than FM in some real tasks

A Spectral Learning Algorithm for Finite State Transducers La marca es pot traduir a altres idiomes, excepte el nom de la Universitat,

Borja Balle, Ariadna Quattoni, Xavier Carreras

LARCA, Laboratory for Relational Algorithmics, Complexity and Learning UNIVERSITAT POLITÈCNICA DE CATALUNYA

ECML PKDD — September 7, 2011

Technical Assumptions

$$
\mathcal{X} = \{a_1,\ldots,a_k\}, \mathcal{Y} = \{b_1,\ldots,b_l\}, \mathcal{H} = \{c_1,\ldots,c_m\}
$$

Parameters

$$
T_a(i,j) = \Pr[H_s = c_i | X_{s-1} = a, H_{s-1} = c_j] \in \mathbb{R}^{m \times m}
$$
 (state transition)
\n
$$
T = \sum_a T_a \Pr[X_1 = a] \in \mathbb{R}^{m \times m}
$$
 ("mean" transition matrix)
\n
$$
O(i,j) = \Pr[Y_s = b_i | H_s = c_j] \in \mathbb{R}^{l \times m}
$$
 (collected emissions)
\n
$$
\alpha(i) = \Pr[H_1 = c_i] \in \mathbb{R}^m
$$
 (initial probabilities)

Assumptions

- 1. $l > m$
- 2. $\alpha > 0$
- 3. rank(T) = rank(O) = m
- 4. $\min_{a} Pr[X_2 = a] > 0$