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Overview

Probabilistic Transducers
I Model input-output relations with hidden states
I As conditional distribution Pr[ y | x ] over strings
I With certain independence assumptions
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I Used in many applications: NLP, biology, . . .
I Hard to learn in general — usually EM algorithm is used
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Overview

Spectral Learning Probabilistic Transducers

Our contribution:

I Fast learning algorithm for probabilistic FST

I With PAC-style theoretical guarantees

I Based on Observable Operator Model for FST

I Using spectral methods (Chang ’96, Mossel-Roch ’05, Hsu et al. ’09,
Siddiqi et al. ’10)

I Performing better than EM in experiments with real data
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Outline
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Learning Observable Operator Models

Experimental Evaluation

Conclusion
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Observable Operators for FST

Deriving Observable Operator Models

Given (x , y) ∈ (X × Y)t aligned sequences, model computes
conditional probability (i.e. |x | = |y |)

Pr[ y | x ] =
∑

h∈Ht Pr[ y ,h | x ] (marginalize states)

=
∑

ht+1∈H Pr[ y ,ht+1 | x ] (independence assumptions)

= 1> αt+1 (vector form, αt+1 ∈ Rm)

= 1>Ayt
xt αt (forward-backward equations)

= 1>Ayt
xt · · ·A

y1
x1 α (induction on t)

The choice of an operator Ab
a depends only on observable symbols
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Observable Operators for FST

Observable Operator Model Parameters
Given X = {a1, . . . ,ak}, Y = {b1, . . . ,bl}, H = {c1, . . . , cm}, then

Pr[ y | x ] = 1>Ayt
xt · · ·A

y1
x1 α with parameters:

Ab
a = Ta Db ∈ Rm×m (factorized operator)

Ta(i , j) = Pr[Hs = ci |Xs−1 = a,Hs−1 = cj ] ∈ Rm×m (state transition)

Db(i , j) = δi,j Pr[Ys = b|Hs = cj ] ∈ Rm×m (observation emission)

O(i , j) = Pr[Ys = bi |Hs = cj ] ∈ Rl×m (collected emissions)

α(i) = Pr[H1 = ci ] ∈ Rm (initial probabilites)

The choice of an operator Ab
a depends only on observable symbols . . .

. . . but operator parameters are conditioned by hidden states
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Observable Operators for FST

A Learnable Set of Observable Operators

Note that for any invertible Q ∈ Rm×m

Pr[ y | x ] = 1>Q−1 (Q Ayt
xt Q−1) · · · (Q Ay1

x1 Q−1) Q α

Idea
(subspace identification methods for linear systems, ’80s)

Find a basis for the state space such that operators in the new basis
are related to observable quantities

Following multiplicity automata and spectral HMM learning . . .
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Observable Operators for FST

A Learnable Set of Observable Operators
Find a basis Q where operators can be expressed in terms of unigram,
bigram and trigram probabilities

ρ(i) = Pr[Y1 = bi ] ∈ Rl

P(i , j) = Pr[Y1 = bj ,Y2 = bi ] ∈ Rl×l

Pb
a (i , j) = Pr[Y1 = bj ,Y2 = b,Y3 = bi |X2 = a] ∈ Rl×l

Theorem (ρ, P and Pb
a are sufficient statistics)

Let P = UΣV ∗ be a thin SVD decomposition, then Q = U>O yields
(under certain assumptions)

Q α = U>ρ

1>Q−1 = ρ>(U>P)+

Q Ab
a Q−1 = (U>Pb

a )(U>P)+
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Learning Observable Operator Models

Spectral Learning Algorithm

Given
I Input X and output Y alphabet
I Number of hidden states m
I Training sample S = {(x1, y1), . . . , (xn, yn)}

Do
I Compute unigram ρ̂, bigram P̂ and trigram P̂b

a relative frequencies
in S

I Perform SVD on P̂ and take Û with top m left singular vectors
I Return operators computed using ρ̂, P̂, P̂b

a and Û
In Time

I O(n) to compute relative frequencies
I O(|Y|3) to compute SVD
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Learning Observable Operator Models

PAC-Style Result
I Input distribution DX over X ∗ with λ = E[|X |], µ = mina Pr[X2 = a]
I Conditional distributions DY |x on Y∗ given x ∈ X ∗ modeled by an

FST with m states (satisfying certain rank assumptions)
I Sampling i.i.d. from joint distribution DX ⊗ DY |X

Theorem
For any 0 < ε, δ < 1, if the algorithm receives a sample of size

n ≥ O

(
λ2m|Y|
ε4µσ2

Oσ
4
P

log
|X |
δ

)
, (σO and σP are mth singular

values of O and P in target)

then with probability at least 1− δ the hypothesis D̂Y |x satisfies

EX

∑
y∈Y∗

∣∣∣DY |X (y)− D̂Y |X (y)
∣∣∣
 ≤ ε . (L1 distance between

joint distributions
DX ⊗ DY |X and

DX ⊗ D̂Y |X )
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Experimental Evaluation

Synthetic Experiments

Goal: Compare against baselines when learning hypothesis hold

Target: Randomly generated with |X | = 3, |Y| = 3, |H| = 2
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I HMM: model input-output
jointly

I k -HMM: one model for each
input symbol

I Results averaged over 5 runs
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Experimental Evaluation

Transliteration Experiments

Goal: Compare against EM in a real task (where modeling assumptions fail)

Task: English to Russian transliteration (brooklyn→ бруклин)
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Training times
Spectral 26 s
EM (iteration) 37 s
EM (best) 1133 s

I Sequence alignment done in
preprocessing

I Standard techniques used for
inference

I Test size: 943, |X | = 82, |Y| = 34
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Conclusion

Summary of Contributions

I Fast spectral method for learning input-output OOM

I Strong theoretical guarantees with few assumptions on input
distribution

I Outperforming previous spectral algorithms on FST

I Faster and better than EM in some real tasks
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Technical Assumptions
X = {a1, . . . ,ak},Y = {b1, . . . ,bl},H = {c1, . . . , cm}

Parameters

Ta(i , j) = Pr[Hs = ci |Xs−1 = a,Hs−1 = cj ] ∈ Rm×m (state transition)

T =
∑

a Ta Pr[X1 = a] ∈ Rm×m (“mean” transition matrix)

O(i , j) = Pr[Ys = bi |Hs = cj ] ∈ Rl×m (collected emissions)

α(i) = Pr[H1 = ci ] ∈ Rm (initial probabilites)

Assumptions
1. l ≥ m
2. α > 0
3. rank(T ) = rank(O) = m
4. mina Pr[X2 = a] > 0
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