A Spectral Learning Algorithm for Finite State Transducers

Borja Balle, Ariadna Quattoni, Xavier Carreras

LARCA. Laboratory for Relational Algorithmics, Complexity and Learning
UNIVERSITAT POLITÈCNICA DE CATALUNYA

ECML PKDD — September 7, 2011

Probabilistic Transducers

- Model input-output relations with hidden states
- As conditional distribution Pr[y | x] over strings
- ▶ With certain independence assumptions

- ▶ Used in many applications: NLP, biology, ...
- Hard to learn in general usually EM algorithm is used

Spectral Learning Probabilistic Transducers

Our contribution:

- Fast learning algorithm for probabilistic FST
- With PAC-style theoretical guarantees
- Based on Observable Operator Model for FST
- Using spectral methods (Chang '96, Mossel-Roch '05, Hsu et al. '09, Siddiqi et al. '10)
- Performing better than EM in experiments with real data

Outline

Observable Operators for FST

Learning Observable Operator Models

Experimental Evaluation

Conclusion

Deriving Observable Operator Models

Given $(x, y) \in (\mathcal{X} \times \mathcal{Y})^t$ aligned sequences, model computes conditional probability (i.e. |x| = |y|)

$$\begin{split} \Pr[\,y\,|\,x\,] &= \sum_{h \in \mathcal{H}^t} \Pr[\,y,h\,|\,x\,] \qquad \qquad \text{(marginalize states)} \\ &= \sum_{h_{t+1} \in \mathcal{H}} \Pr[\,y,h_{t+1}\,|\,x\,] \qquad \qquad \text{(independence assumptions)} \\ &= \mathbf{1}^\top \,\alpha_{t+1} \qquad \qquad \qquad \text{(vector form, $\alpha_{t+1} \in \mathbb{R}^m$)} \\ &= \mathbf{1}^\top A^{y_t}_{x_t} \,\alpha_t \qquad \qquad \qquad \text{(forward-backward equations)} \\ &= \mathbf{1}^\top A^{y_t}_{x_t} \cdots A^{y_1}_{x_1} \,\alpha \qquad \qquad \qquad \text{(induction on t)} \end{split}$$

The choice of an operator A_a^b depends only on observable symbols

Observable Operator Model Parameters

Given
$$\mathcal{X} = \{a_1, \dots, a_k\}$$
, $\mathcal{Y} = \{b_1, \dots, b_l\}$, $\mathcal{H} = \{c_1, \dots, c_m\}$, then
$$\Pr[y \mid x] = \mathbf{1}^{\top} A_{x_l}^{y_l} \cdots A_{x_1}^{y_1} \alpha \text{ with parameters:}$$

$$A^b = T P \in \mathbb{R}^{m \times m}$$
(factorized energy)

$$A_a^b = T_a D_b \in \mathbb{R}^{m \times m} \qquad \qquad \text{(factorized operator)}$$

$$T_a(i,j) = \Pr[H_s = c_i | X_{s-1} = a, H_{s-1} = c_j] \in \mathbb{R}^{m \times m} \qquad \text{(state transition)}$$

$$D_b(i,j) = \delta_{i,j} \Pr[Y_s = b | H_s = c_j] \in \mathbb{R}^{m \times m} \qquad \text{(observation emission)}$$

$$O(i,j) = \Pr[Y_s = b_i | H_s = c_j] \in \mathbb{R}^{l \times m} \qquad \text{(collected emissions)}$$

$$\alpha(i) = \Pr[H_1 = c_i] \in \mathbb{R}^m \qquad \text{(initial probabilites)}$$

The choice of an operator A_a^b depends only on observable symbols . . .

... but operator parameters are conditioned by hidden states

A Learnable Set of Observable Operators

Note that for any invertible $Q \in \mathbb{R}^{m \times m}$

$$\Pr[y \mid x] = 1^{\top} Q^{-1} (Q A_{x_t}^{y_t} Q^{-1}) \cdots (Q A_{x_1}^{y_1} Q^{-1}) Q \alpha$$

Idea

(subspace identification methods for linear systems, '80s)

Find a basis for the state space such that operators in the new basis are related to observable quantities

Following multiplicity automata and spectral HMM learning . . .

A Learnable Set of Observable Operators

Find a basis Q where operators can be expressed in terms of unigram, bigram and trigram probabilities

$$ho(i) = \Pr[Y_1 = b_i] \in \mathbb{R}^I$$
 $P(i,j) = \Pr[Y_1 = b_j, Y_2 = b_i] \in \mathbb{R}^{I \times I}$
 $P_a^b(i,j) = \Pr[Y_1 = b_j, Y_2 = b, Y_3 = b_i | X_2 = a] \in \mathbb{R}^{I \times I}$

Theorem (ρ , P and P_a^b are sufficient statistics)

Let $P = U\Sigma V^*$ be a thin SVD decomposition, then $Q = U^TO$ yields (under certain assumptions)

$$Q\alpha = U^{\top}\rho$$

$$1^{\top} Q^{-1} = \rho^{\top} (U^{\top}P)^{+}$$

$$QA_{a}^{b} Q^{-1} = (U^{\top}P_{a}^{b})(U^{\top}P)^{+}$$

Spectral Learning Algorithm

Given

- ▶ Input X and output Y alphabet
- Number of hidden states m
- ► Training sample $S = \{(x^1, y^1), \dots, (x^n, y^n)\}$

Do

- ► Compute unigram $\widehat{\rho}$, bigram \widehat{P} and trigram \widehat{P}_a^b relative frequencies in S
- ▶ Perform SVD on \widehat{P} and take \widehat{U} with top m left singular vectors
- ▶ Return operators computed using $\widehat{\rho}$, \widehat{P} , \widehat{P}_a^b and \widehat{U}

In Time

- ► O(n) to compute relative frequencies
- ▶ $O(|\mathcal{Y}|^3)$ to compute SVD

PAC-Style Result

- ▶ Input distribution D_X over X^* with $\lambda = E[|X|]$, $\mu = \min_a \Pr[X_2 = a]$
- ► Conditional distributions $D_{Y|X}$ on \mathcal{Y}^* given $X \in \mathcal{X}^*$ modeled by an FST with m states (satisfying certain rank assumptions)
- ▶ Sampling i.i.d. from joint distribution $D_X \otimes D_{Y|X}$

Theorem

For any 0 $< \varepsilon, \delta <$ 1, if the algorithm receives a sample of size

$$n \geq O\left(rac{\lambda^2 m |\mathcal{Y}|}{arepsilon^4 \mu \sigma_{O}^2 \sigma_{P}^4} \log rac{|\mathcal{X}|}{\delta}
ight) \;\;, \qquad ext{(σ_O and σ_P are mth singular values of O and P in target)}$$

then with probability at least $1 - \delta$ the hypothesis $\widehat{D}_{Y|X}$ satisfies

$$\mathsf{E}_X \left[\sum_{y \in \mathcal{Y}^*} \left| D_{Y|X}(y) - \widehat{D}_{Y|X}(y) \right| \right] \leq \varepsilon \quad \text{.} \quad \text{$\frac{(\mathsf{L}_1 \text{ distance between joint distributions} \\ D_X \otimes D_{Y|X} \text{ and} \\ D_X \otimes \widehat{D}_{Y|X})$}$$

Synthetic Experiments

Goal: Compare against baselines when learning hypothesis hold

Target: Randomly generated with $|\mathcal{X}| = 3$, $|\mathcal{Y}| = 3$, $|\mathcal{H}| = 2$

- HMM: model input-output jointly
- k-HMM: one model for each input symbol
- Results averaged over 5 runs

Transliteration Experiments

Goal: Compare against EM in a real task (where modeling assumptions fail)

Task: English to Russian transliteration (brooklyn → бруклин)

Training times	
Spectral	26 s
EM (iteration)	37 s
FM (hest)	1133 s

- Sequence alignment done in preprocessing
- Standard techniques used for inference
- ► Test size: 943, $|\mathcal{X}| = 82$, $|\mathcal{Y}| = 34$

Summary of Contributions

- Fast spectral method for learning input-output OOM
- Strong theoretical guarantees with few assumptions on input distribution
- Outperforming previous spectral algorithms on FST
- Faster and better than EM in some real tasks

A Spectral Learning Algorithm for Finite State Transducers

Borja Balle, Ariadna Quattoni, Xavier Carreras

LARCA. Laboratory for Relational Algorithmics, Complexity and Learning
UNIVERSITAT POLITÈCNICA DE CATALUNYA

ECML PKDD — September 7, 2011

Technical Assumptions

$$\mathcal{X} = \{a_1, \dots, a_k\}, \mathcal{Y} = \{b_1, \dots, b_l\}, \mathcal{H} = \{c_1, \dots, c_m\}$$

Parameters

$$T_a(i,j) = \Pr[H_s = c_i | X_{s-1} = a, H_{s-1} = c_j] \in \mathbb{R}^{m \times m}$$
 (state transition)
 $T = \sum_a T_a \Pr[X_1 = a] \in \mathbb{R}^{m \times m}$ ("mean" transition matrix)
 $O(i,j) = \Pr[Y_s = b_i | H_s = c_j] \in \mathbb{R}^{l \times m}$ (collected emissions)
 $\alpha(i) = \Pr[H_1 = c_i] \in \mathbb{R}^m$ (initial probabilites)

Assumptions

- 1. $l \geq m$
- 2. $\alpha > 0$
- 3. $\operatorname{rank}(T) = \operatorname{rank}(O) = m$
- 4. $\min_{a} \Pr[X_2 = a] > 0$