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Example Application: Web User Modeling
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“Wish List”

� Process examples as fast as they
arrive (105 per sec. or more)

� Use small amount of memory (must
fit into machine’s main memory)

� Detect changes in customer behavior
and adapt the model accordingly

Other Applications: Process Mining, Biological Models (DNA and aminoacid sequences)
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The Data Streams Algorithmic Model

An algorithm receives an infinite stream x1, x2, . . . , xt , . . . from some domain X and must:

� Make only one pass over the data and process each item in time Op1q
� At every time t use sublinear memory (e.g. Oplog tq, Op?tq)
� Adapt to possible “changes” in the data

It is a theoretically challenging model useful for applications:

� Originated in the algorithmics community

� Realistic for Data Mining and Machine Learning tasks in real-time

� Feasible way to deal with Big Data problems

When studying learning problems with streaming data:

� In the worst case setting it resembles Gold’s model (with algorithmic constraints)

� But we consider a PAC-style scenario where:
� xt are all independent and generated from a distribution Dt

� the sequence of distributions D1, D2, . . . , Dt , . . . either changes very slowly or presents only
abrupt changes but very rarely



Hypothesis Class: PDFA

Probabilistic Deterministic Finite Automata = DFA + Probabilities
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Transition/Stop probabilities

q pqpaq pqpbq pqpξq
1 0.3 0.7 0.0
2 0.5 0.5 0.0
3 0.8 0.0 0.2

Parameters

� n (states)

� |Σ| (alphabet)

� L (expected length)

� µ (distinguishability, L8)

µ � minq�q1 maxxPΣ� |Dqpxq � Dq1pxq|



State Merge/Split Algorithm

Usual approach to PDFA learning [Carrasco–Oncina ’94, Ron et al. ’98, Clark–Thollard ’04,
Palmer–Goldberg ’05, Castro–Gavaldà ’08, etc.]
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Statistical tests

S � a�1S
S � b�1a�1S

S � b�1S
a�1S � b�1S

b�1S � a�1a�1S
b�1S � b�1b�1S



Description of the Algorithm

System Architecture

Learner

Change Det.

Adapter

Predictor

Stream

Change!

Hypothesis

Predictions

Learner Module

initialize H with safe qλ;
foreach σ P Σ do

add a candidate qσ to H;
schedule insignificance and similiarity tests for qσ;

foreach string xt in the stream do
foreach decomposition xt � wz, with w , z P Σ� do

if qw is defined then

add z to Ŝw ;

if qw is a candidate and |Ŝw | is large enough then call
SimilarityTestpqw ,δq;

foreach candidate qw do
if it is time to test insignificance of qw then

if |Ŝw | is too small then declare qw insignificant;
else schedule another insignificance test for qw ;

if H has more than n safes or there are no candidates left then
return H;



Sample Sketches for Similarity Testing

Note: Instead of keeping a sample Sw for each state qw , the algorithm keeps a sketch Ŝw of
each sample

A sketch using memory Op1{µq should be enough:

� Given samples S , S 1 from distributions D, D 1

� Algorithm wants to test L8pD, D 1q � 0 or L8pD, D 1q ¥ µ
� In the second case, if |Dpxq � D 1pxq| ¥ µ then either Dpxq ¥ µ or D 1pxq ¥ µ
� It is enough to find all strings with Dpxq, D 1pxq � Ωpµq, of which there are Op1{µq

In our algorithm, each sketch uses a SpaceSaving data structure [Metwally et al. ’05]:

� Uses memory Op1{µq
� Finds every string whose probability is Ωpµq (frequent strings)

� And approximates their probability with enough accuracy

� Easier to implement than sketches based on hash functions



Properties of the Algorithm

Streaming-specific features

� Adaptive test scheduling (decide as soon as possible)

� Similarity test based on Vapnik–Chervonenkis bound (slow similarity detection)

� Use bootstrapped confidence intervals in tests (faster convergence)

Complexity Bounds (with any reasonable test)

� Time per example OpLq (expected, amortized)

� The learner reads Opn2|Σ|2{εµ2q examples (in expectation)

� Memory usage is Opn|Σ|L{µq (roughly Op?tq)
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Testing Similarity between Probability Distributions

Goal: decide if L8pD, D 1q � 0 or L8pD, D 1q ¥ µ from samples S , S 1

Statistical Test Based on Empirical L8 (the “default”)

� Let µ� � L8pD, D 1q and compute µ̂ � L8pS , S 1q
� Compute ∆l ,∆u such that µ̂� ∆l ¤ µ� ¤ µ̂� ∆u holds w.h.p.

� If µ̂� ∆l ¡ 0 decide D � D 1

� If µ̂� ∆u   µ decide D � D 1

� Else, wait for more examples

Problem: asymmetry — deciding dissimilarity is easier that deciding similarity

� When D � D 1 will decide correctly w.h.p. when |S |, |S 1| � 1{µ2
�

� When D � D 1 will decide correctly w.h.p. when |S |, |S 1| � 1{µ2

In the later we are always competing against the worst case L8pD, D 1q � µ



Enter the Bootstrap

� In the test I just described there is another worst case assumption — the confidence
interval µ� ¤ µ̂� ∆u must hold for any D and D 1

� But it may be the case that for some D, certifying that S , S 1 � D come from the same
distribution is easier

� The bootstrap is widely used in statistics for computing distribution dependent confidence
intervals (among many other things)

Basic Idea

� Suppose we have r different samples
Sp1q, . . . , Sprq � D

� Compute distances µ̂i � L8pSpiq, S 1
piqq

� Use them to compute a histogram of the
distribution of µ̂

(1 − δ)%

µ̂µ̂ − ∆l µ̂ + ∆u



Enter the Bootstrap

� In the test I just described there is another worst case assumption — the confidence
interval µ� ¤ µ̂� ∆u must hold for any D and D 1

� But it may be the case that for some D, certifying that S , S 1 � D come from the same
distribution is easier

� The bootstrap is widely used in statistics for computing distribution dependent confidence
intervals (among many other things)

Basic Idea

� Suppose we have r different samples
Sp1q, . . . , Sprq � D

� Compute distances µ̂i � L8pSpiq, S 1
piqq

� Use them to compute a histogram of the
distribution of µ̂

Bootstrapped Confidence Intervals

� Given a sample S , obtain other samples
S̃piq by sampling from S uniformly with
replacement

� Sort estimates increasingly µ̃1 ¤ . . . ¤ µ̃r

� Say that µ� ¤ µ̃rp1�δqrs with prob. ¥ 1� δ



Bootstrapped Confidence Intervals in Data Streams
Question: Do you need to store the full sample to do bootstrap resampling?

Answer: No, if you can test from sketched data

The Bootstrap Sketch

� Keep r copies of the sketch you use for
testing (e.g. SpaceSaving)

� For each item xt in the stream, randomly
insert r copies of xt into the r sketches

� Comparing each pair S̃piq, S̃ 1
pjq can obtain

r 2 approximations µ̃i ,j

� Choosing r involves a trade-off between
accuracy and memory

sketches
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In theory can prove bound (asymptotically) comparable to Vapnik–Chervonenkis

In practice assuming µ� ¤ µ̃rp1�δqr2s gives accurate and statisically efficient similarity test



Experimental Results for Learner

� Prototype written in C++ and Boost, run in this laptop
� Evaluated with Reber Grammar (typical Grammatical Inference benchmark)

� |Σ| � 5, n � 6, µ � 0.2, L � 8

� Compared VC and Bootstrap (r � 10) based tests

Examples Memory (MiB) Time/item (ms)

Hoeffding 57617 6.1 0.05
Bootstrap 23844 53.7 1.2
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What if n and µ are unknown (or change)?

Want to design strategy for fast and accurate parameter estimation

Parameter Search Algorithm

n Ð 2, µÐ 1{8;
while true do

H Ð Learnerpn,µq;
if |H|   n then µÐ µ{8;
else n Ð 2n;

if n ¡ p1{µq1{3 then µÐ µ{8;

Complexity Bounds

� Needs only Oplogpn�{µ1{3
� qq calls to Learner

� In expectation will read Opn6
�|Σ|2{εµ2

�q elements

� Memory usage grows like Opt2{3q

Note: can tweak parameters to trade-off convergence speed and memory usage



Adapting the Hypothesis to Changes
Adapter block — Once the structure is known. . .

� Estimating probabilities is easy

� Estimations can be adapted to changes (e.g. moving average)
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Transition/Stop probabilities

S � tabb, baab, bbaabbu
q pqpaq pqpbq pqpξq
1 2/6 4/6 0/6
2 2/6 4/6 0/6
3 1/4 0/4 3/4

But, sometimes the current structure is not good anymore



Detecting Structural Changes

Idea: “change” is difficult to define in general, focus on changes explained in terms of structure
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� Given a PDFA, compute the expected number of times
each state is visited when generating a string

� Given a sample, compute the average number of times
strings hit any state

� If there is a significant difference, conclude the
structure has changed

S � tabb, baab, bbaabbu
h1 h2 h3

6/3 6/3 4/3

� Restart structure learning when a change is detected

� Adapting probabilities may be enough, but re-learning does no damage
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Conclusion

Summary of Contributions

� Adaptation of state-merging paradigm to streaming data
� Fast convergence achieved by:

� adaptive test scheduling
� better similarity testing
� efficient parameter search

� Use of sketching algorithms for implementing the bootstrap and reducing memory usage

Future Work

� Deploy real system and exploit parallelization oportunities

� Develop further similarity tests based on the bootstrap

� Adapt other GI algorithms to the data streams framework



Bootstrapping and Learning PDFA in Data Streams

Borja Balle, Jorge Castro, Ricard Gavaldà
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