
Bootstrapping and Learning PDFA in Data Streams

Borja Balle, Jorge Castro, Ricard Gavaldà

Traducció de la marca a altres idiomes11

La marca es pot traduir a altres idiomes, excepte el nom de la Universitat,
que no és traduïble.

International Colloquium on Grammatical Inference

University of Maryland, September 2012

This work is partially supported by the PASCAL2 Network

Example Application: Web User Modeling

Customers

Online
Store

LogCustomer
Model

Stream
Mining

“Wish List”

� Process examples as fast as they
arrive (105 per sec. or more)

� Use small amount of memory (must
fit into machine’s main memory)

� Detect changes in customer behavior
and adapt the model accordingly

Other Applications: Process Mining, Biological Models (DNA and aminoacid sequences)

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Conclusion

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Conclusion

The Data Streams Algorithmic Model

An algorithm receives an infinite stream x1, x2, . . . , xt , . . . from some domain X and must:

� Make only one pass over the data and process each item in time Op1q
� At every time t use sublinear memory (e.g. Oplog tq, Op?tq)
� Adapt to possible “changes” in the data

It is a theoretically challenging model useful for applications:

� Originated in the algorithmics community

� Realistic for Data Mining and Machine Learning tasks in real-time

� Feasible way to deal with Big Data problems

When studying learning problems with streaming data:

� In the worst case setting it resembles Gold’s model (with algorithmic constraints)

� But we consider a PAC-style scenario where:
� xt are all independent and generated from a distribution Dt

� the sequence of distributions D1, D2, . . . , Dt , . . . either changes very slowly or presents only
abrupt changes but very rarely

Hypothesis Class: PDFA

Probabilistic Deterministic Finite Automata = DFA + Probabilities

1

2

3
b

a

a

a

b

Transition/Stop probabilities

q pqpaq pqpbq pqpξq
1 0.3 0.7 0.0
2 0.5 0.5 0.0
3 0.8 0.0 0.2

Parameters

� n (states)

� |Σ| (alphabet)

� L (expected length)

� µ (distinguishability, L8)

µ � minq�q1 maxxPΣ� |Dqpxq � Dq1pxq|

State Merge/Split Algorithm

Usual approach to PDFA learning [Carrasco–Oncina ’94, Ron et al. ’98, Clark–Thollard ’04,
Palmer–Goldberg ’05, Castro–Gavaldà ’08, etc.]

S a−1S

b−1S

a

b

S a−1S

b−1S

a

b

b−1a−1S

a−1a−1S

b

a

S a−1S

b−1S

a

b

a−1a−1S

a

b

S a−1S

b−1S

a

b

a−1a−1S

a

b

b−1b−1S

a−1b−1S

a

b

S a−1S

b−1S

a

b

a−1a−1S

a

b

b−1b−1S

b

a

S a−1S

b−1S

a

b

b

a

a

b

Statistical tests

S � a�1S
S � b�1a�1S

S � b�1S
a�1S � b�1S

b�1S � a�1a�1S
b�1S � b�1b�1S

Description of the Algorithm

System Architecture

Learner

Change Det.

Adapter

Predictor

Stream

Change!

Hypothesis

Predictions

Learner Module

initialize H with safe qλ;
foreach σ P Σ do

add a candidate qσ to H;
schedule insignificance and similiarity tests for qσ;

foreach string xt in the stream do
foreach decomposition xt � wz, with w , z P Σ� do

if qw is defined then

add z to Ŝw ;

if qw is a candidate and |Ŝw | is large enough then call
SimilarityTestpqw ,δq;

foreach candidate qw do
if it is time to test insignificance of qw then

if |Ŝw | is too small then declare qw insignificant;
else schedule another insignificance test for qw ;

if H has more than n safes or there are no candidates left then
return H;

Sample Sketches for Similarity Testing

Note: Instead of keeping a sample Sw for each state qw , the algorithm keeps a sketch Ŝw of
each sample

A sketch using memory Op1{µq should be enough:

� Given samples S , S 1 from distributions D, D 1

� Algorithm wants to test L8pD, D 1q � 0 or L8pD, D 1q ¥ µ
� In the second case, if |Dpxq � D 1pxq| ¥ µ then either Dpxq ¥ µ or D 1pxq ¥ µ
� It is enough to find all strings with Dpxq, D 1pxq � Ωpµq, of which there are Op1{µq

In our algorithm, each sketch uses a SpaceSaving data structure [Metwally et al. ’05]:

� Uses memory Op1{µq
� Finds every string whose probability is Ωpµq (frequent strings)

� And approximates their probability with enough accuracy

� Easier to implement than sketches based on hash functions

Properties of the Algorithm

Streaming-specific features

� Adaptive test scheduling (decide as soon as possible)

� Similarity test based on Vapnik–Chervonenkis bound (slow similarity detection)

� Use bootstrapped confidence intervals in tests (faster convergence)

Complexity Bounds (with any reasonable test)

� Time per example OpLq (expected, amortized)

� The learner reads Opn2|Σ|2{εµ2q examples (in expectation)

� Memory usage is Opn|Σ|L{µq (roughly Op?tq)

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Conclusion

Testing Similarity between Probability Distributions

Goal: decide if L8pD, D 1q � 0 or L8pD, D 1q ¥ µ from samples S , S 1

Statistical Test Based on Empirical L8 (the “default”)

� Let µ� � L8pD, D 1q and compute µ̂ � L8pS , S 1q
� Compute ∆l ,∆u such that µ̂� ∆l ¤ µ� ¤ µ̂� ∆u holds w.h.p.

� If µ̂� ∆l ¡ 0 decide D � D 1

� If µ̂� ∆u µ decide D � D 1

� Else, wait for more examples

Problem: asymmetry — deciding dissimilarity is easier that deciding similarity

� When D � D 1 will decide correctly w.h.p. when |S |, |S 1| � 1{µ2
�

� When D � D 1 will decide correctly w.h.p. when |S |, |S 1| � 1{µ2

In the later we are always competing against the worst case L8pD, D 1q � µ

Enter the Bootstrap

� In the test I just described there is another worst case assumption — the confidence
interval µ� ¤ µ̂� ∆u must hold for any D and D 1

� But it may be the case that for some D, certifying that S , S 1 � D come from the same
distribution is easier

� The bootstrap is widely used in statistics for computing distribution dependent confidence
intervals (among many other things)

Basic Idea

� Suppose we have r different samples
Sp1q, . . . , Sprq � D

� Compute distances µ̂i � L8pSpiq, S 1
piqq

� Use them to compute a histogram of the
distribution of µ̂

(1 − δ)%

µ̂µ̂ − ∆l µ̂ + ∆u

Enter the Bootstrap

� In the test I just described there is another worst case assumption — the confidence
interval µ� ¤ µ̂� ∆u must hold for any D and D 1

� But it may be the case that for some D, certifying that S , S 1 � D come from the same
distribution is easier

� The bootstrap is widely used in statistics for computing distribution dependent confidence
intervals (among many other things)

Basic Idea

� Suppose we have r different samples
Sp1q, . . . , Sprq � D

� Compute distances µ̂i � L8pSpiq, S 1
piqq

� Use them to compute a histogram of the
distribution of µ̂

Bootstrapped Confidence Intervals

� Given a sample S , obtain other samples
S̃piq by sampling from S uniformly with
replacement

� Sort estimates increasingly µ̃1 ¤ . . . ¤ µ̃r

� Say that µ� ¤ µ̃rp1�δqrs with prob. ¥ 1� δ

Bootstrapped Confidence Intervals in Data Streams
Question: Do you need to store the full sample to do bootstrap resampling?

Answer: No, if you can test from sketched data

The Bootstrap Sketch

� Keep r copies of the sketch you use for
testing (e.g. SpaceSaving)

� For each item xt in the stream, randomly
insert r copies of xt into the r sketches

� Comparing each pair S̃piq, S̃ 1
pjq can obtain

r 2 approximations µ̃i ,j

� Choosing r involves a trade-off between
accuracy and memory

sketches

r

r

x

x

x

x

x

copy

random
assingments

In theory can prove bound (asymptotically) comparable to Vapnik–Chervonenkis

In practice assuming µ� ¤ µ̃rp1�δqr2s gives accurate and statisically efficient similarity test

Experimental Results for Learner

� Prototype written in C++ and Boost, run in this laptop
� Evaluated with Reber Grammar (typical Grammatical Inference benchmark)

� |Σ| � 5, n � 6, µ � 0.2, L � 8

� Compared VC and Bootstrap (r � 10) based tests

Examples Memory (MiB) Time/item (ms)

Hoeffding 57617 6.1 0.05
Bootstrap 23844 53.7 1.2

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Conclusion

What if n and µ are unknown (or change)?

Want to design strategy for fast and accurate parameter estimation

Parameter Search Algorithm

n Ð 2, µÐ 1{8;
while true do

H Ð Learnerpn,µq;
if |H| n then µÐ µ{8;
else n Ð 2n;

if n ¡ p1{µq1{3 then µÐ µ{8;

Complexity Bounds

� Needs only Oplogpn�{µ1{3
� qq calls to Learner

� In expectation will read Opn6
�|Σ|2{εµ2

�q elements

� Memory usage grows like Opt2{3q

Note: can tweak parameters to trade-off convergence speed and memory usage

Adapting the Hypothesis to Changes
Adapter block — Once the structure is known. . .

� Estimating probabilities is easy

� Estimations can be adapted to changes (e.g. moving average)

1

2

3
b

a

a

a

b

Transition/Stop probabilities

S � tabb, baab, bbaabbu
q pqpaq pqpbq pqpξq
1 2/6 4/6 0/6
2 2/6 4/6 0/6
3 1/4 0/4 3/4

But, sometimes the current structure is not good anymore

Detecting Structural Changes

Idea: “change” is difficult to define in general, focus on changes explained in terms of structure

1

2

3
b

a

a

a

b

� Given a PDFA, compute the expected number of times
each state is visited when generating a string

� Given a sample, compute the average number of times
strings hit any state

� If there is a significant difference, conclude the
structure has changed

S � tabb, baab, bbaabbu
h1 h2 h3

6/3 6/3 4/3

� Restart structure learning when a change is detected

� Adapting probabilities may be enough, but re-learning does no damage

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Conclusion

Conclusion

Summary of Contributions

� Adaptation of state-merging paradigm to streaming data
� Fast convergence achieved by:

� adaptive test scheduling
� better similarity testing
� efficient parameter search

� Use of sketching algorithms for implementing the bootstrap and reducing memory usage

Future Work

� Deploy real system and exploit parallelization oportunities

� Develop further similarity tests based on the bootstrap

� Adapt other GI algorithms to the data streams framework

Bootstrapping and Learning PDFA in Data Streams

Borja Balle, Jorge Castro, Ricard Gavaldà

Traducció de la marca a altres idiomes11

La marca es pot traduir a altres idiomes, excepte el nom de la Universitat,
que no és traduïble.

International Colloquium on Grammatical Inference

University of Maryland, September 2012

This work is partially supported by the PASCAL2 Network

	Learning PDFA from Data Streams
	Testing Similarity in Data Streams with the Bootstrap
	Adapting to Changes in the Target
	Conclusion

