Bootstrapping and Learning PDFA in Data Streams

Borja Balle, Jorge Castro, Ricard Gavaldà

International Colloquium on Grammatical Inference University of Maryland, September 2012

This work is partially supported by the PASCAL2 Network

Example Application: Web User Modeling

"Wish List"

- Process examples as fast as they arrive (10⁵ per sec. or more)
- Use small amount of memory (must fit into machine's main memory)
- Detect *changes* in customer behavior and *adapt* the model accordingly

Other Applications: Process Mining, Biological Models (DNA and aminoacid sequences)

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

The Data Streams Algorithmic Model

An algorithm receives an infinite stream $x_1, x_2, \ldots, x_t, \ldots$ from some domain X and must:

- Make only one pass over the data and process each item in time O(1)
- At every time t use sublinear memory (e.g. $O(\log t)$, $O(\sqrt{t})$)
- Adapt to possible "changes" in the data

It is a theoretically challenging model useful for applications:

- Originated in the algorithmics community
- Realistic for Data Mining and Machine Learning tasks in real-time
- Feasible way to deal with Big Data problems

When studying learning problems with streaming data:

- In the worst case setting it resembles Gold's model (with algorithmic constraints)
- But we consider a PAC-style scenario where:
 - x_t are all independent and generated from a distribution D_t
 - ▶ the sequence of distributions D₁, D₂,..., D_t,... either changes very slowly or presents only abrupt changes but very rarely

Hypothesis Class: PDFA

$\label{eq:probabilistic Deterministic Finite Automata = DFA + Probabilities$

Transition/Stop probabilities

\boldsymbol{q}	$p_q(a)$	$p_q(b)$	$p_q(\xi)$
1	0.3	0.7	0.0
2	0.5	0.5	0.0
3	0.8	0.0	0.2

Parameters

- n (states)
- $|\Sigma|$ (alphabet)
- L (expected length)
- μ (distinguishability, L_{∞})

 $\mu = \min_{q \neq q'} \max_{x \in \Sigma^*} |D_q(x) - D_{q'}(x)|$

State Merge/Split Algorithm

Usual approach to PDFA learning [Carrasco–Oncina '94, Ron et al. '98, Clark–Thollard '04, Palmer–Goldberg '05, Castro–Gavaldà '08, etc.]

Statistical tests

 $\begin{array}{c} S \not\approx a^{-1}S\\ S \approx b^{-1}a^{-1}S\\ S \not\approx b^{-1}S\\ a^{-1}S \not\approx b^{-1}S\\ b^{-1}S \approx a^{-1}a^{-1}S\\ b^{-1}S \approx b^{-1}b^{-1}S\end{array}$

Description of the Algorithm

System Architecture

Learner Module

initialize H with safe q_{λ} : foreach $\sigma \in \Sigma$ do add a candidate q_{σ} to H; schedule insignificance and similarity tests for q_{σ} ; **foreach** string x_t in the stream **do** foreach decomposition $x_t = wz$, with $w, z \in \Sigma^*$ do if q_w is defined then add z to \hat{S}_{w} : if q_w is a candidate and $|\hat{S}_w|$ is large enough then call SimilarityTest(q_w, δ): foreach candidate q_w do if it is time to test insignificance of q_w then if $|\hat{S}_w|$ is too small then declare q_w insignificant; else schedule another insignificance test for q_w ; if H has more than n safes or there are no candidates left then return H:

Sample Sketches for Similarity Testing

Note: Instead of keeping a sample S_w for each state q_w , the algorithm keeps a sketch \hat{S}_w of each sample

A sketch using memory $O(1/\mu)$ should be enough:

- Given samples S, S' from distributions D, D'
- \blacktriangleright Algorithm wants to test $\mathsf{L}_\infty(D,D')=0$ or $\mathsf{L}_\infty(D,D') \geqslant \mu$
- In the second case, if $|D(x) D'(x)| \ge \mu$ then either $D(x) \ge \mu$ or $D'(x) \ge \mu$
- It is enough to find all strings with D(x), $D'(x) = \Omega(\mu)$, of which there are $O(1/\mu)$

In our algorithm, each sketch uses a SpaceSaving data structure [Metwally et al. '05]:

- Uses memory $O(1/\mu)$
- \blacktriangleright Finds every string whose probability is $\Omega(\mu)$ (frequent strings)
- And approximates their probability with enough accuracy
- Easier to implement than sketches based on hash functions

Properties of the Algorithm

Streaming-specific features

- Adaptive test scheduling (decide as soon as possible)
- Similarity test based on Vapnik–Chervonenkis bound (slow similarity detection)
- Use bootstrapped confidence intervals in tests (faster convergence)

Complexity Bounds (with any reasonable test)

- Time per example O(L) (expected, amortized)
- The learner reads $O(n^2|\Sigma|^2/\varepsilon\mu^2)$ examples (in expectation)
- Memory usage is $O(n|\Sigma|L/\mu)$ (roughly $O(\sqrt{t})$)

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Testing Similarity between Probability Distributions

Goal: decide if $L_{\infty}(D, D') = 0$ or $L_{\infty}(D, D') \ge \mu$ from samples *S*, *S'*

Statistical Test Based on Empirical L_{∞} (the "default")

- Let $\mu_{\star} = L_{\infty}(D, D')$ and compute $\hat{\mu} = L_{\infty}(S, S')$
- Compute Δ_l, Δ_u such that $\hat{\mu} \Delta_l \leqslant \mu_\star \leqslant \hat{\mu} + \Delta_u$ holds w.h.p.
- If $\hat{\mu} \Delta_l > 0$ decide $D \neq D'$
- If $\hat{\mu} + \Delta_u < \mu$ decide D = D'
- Else, wait for more examples

Problem: asymmetry — deciding *dissimilarity* is easier that deciding *similarity*

- When $D \neq D'$ will decide correctly w.h.p. when |S|, $|S'| \approx 1/\mu_{\star}^2$
- When D = D' will decide correctly w.h.p. when |S|, $|S'| \approx 1/\mu^2$

In the later we are always competing against the worst case $\mathsf{L}_\infty(D,D')=\mu$

Enter the Bootstrap

- ▶ In the test I just described there is another *worst case* assumption the confidence interval $\mu_{\star} \leq \hat{\mu} + \Delta_u$ must hold *for any D and D'*
- ▶ But it may be the case that for some D, certifying that S, S' ~ D come from the same distribution is easier
- The *bootstrap* is widely used in statistics for computing *distribution dependent* confidence intervals (among many other things)

Basic Idea

- Suppose we have *r* different samples $S_{(1)}, \ldots, S_{(r)} \sim D$
- Compute distances $\hat{\mu}_i = L_{\infty}(S_{(i)}, S'_{(i)})$
- Use them to compute a histogram of the distribution of $\hat{\mu}$

Enter the Bootstrap

- ► In the test I just described there is another *worst case* assumption the confidence interval $\mu_{\star} \leq \hat{\mu} + \Delta_u$ must hold for any *D* and *D*'
- ▶ But it may be the case that for some D, certifying that S, S' ~ D come from the same distribution is easier
- The *bootstrap* is widely used in statistics for computing *distribution dependent* confidence intervals (among many other things)

Basic Idea

- Suppose we have r different samples $S_{(1)}, \ldots, S_{(r)} \sim D$
- Compute distances $\hat{\mu}_i = L_{\infty}(S_{(i)}, S'_{(i)})$
- \blacktriangleright Use them to compute a histogram of the distribution of $\hat{\mu}$

Bootstrapped Confidence Intervals

- Given a sample S, obtain other samples $\tilde{S}_{(i)}$ by sampling from S uniformly with replacement
- Sort estimates increasingly $\tilde{\mu}_1 \leqslant \ldots \leqslant \tilde{\mu}_r$
- \blacktriangleright Say that $\mu_\star \leqslant \tilde{\mu}_{[(1-\delta)r]}$ with prob. $\geqslant 1-\delta$

Bootstrapped Confidence Intervals in Data Streams

Question: Do you need to store the full sample to do bootstrap resampling?

Answer: No, if you can test from sketched data

The Bootstrap Sketch

- Keep r copies of the sketch you use for testing (e.g. SpaceSaving)
- For each item x_t in the stream, randomly insert r copies of x_t into the r sketches
- Comparing each pair $\tilde{S}_{(i)}$, $\tilde{S}'_{(j)}$ can obtain r^2 approximations $\tilde{\mu}_{i,j}$
- Choosing r involves a trade-off between accuracy and memory

In theory can prove bound (asymptotically) comparable to Vapnik–Chervonenkis In practice assuming $\mu_{\star} \leqslant \tilde{\mu}_{[(1-\delta)r^2]}$ gives accurate and statisically efficient similarity test

Experimental Results for Learner

- \blacktriangleright Prototype written in C++ and Boost, run in this laptop
- Evaluated with Reber Grammar (typical Grammatical Inference benchmark)

• $|\Sigma| = 5, n = 6, \mu = 0.2, L \approx 8$

• Compared VC and Bootstrap (r = 10) based tests

	Examples	Memory (MiB)	Time/item (ms)
Hoeffding	57617	6.1	0.05
Bootstrap	23844	53.7	1.2

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

What if n and μ are unknown (or change)?

Want to design strategy for fast and accurate parameter estimation

```
Parameter Search Algorithm
```

 $n \leftarrow 2, \ \mu \leftarrow 1/8;$ while true do

> $H \leftarrow \text{Learner}(n, \mu);$ if |H| < n then $\mu \leftarrow \mu/8;$ else $n \leftarrow 2n;$ if $n > (1/\mu)^{1/3}$ then $\mu \leftarrow \mu/8;$

Complexity Bounds

- Needs only $O(\log(n_\star/\mu_\star^{1/3}))$ calls to Learner
- In expectation will read $O(n_\star^6|\Sigma|^2/\epsilon\mu_\star^2)$ elements
- Memory usage grows like $O(t^{2/3})$

Note: can tweak parameters to trade-off convergence speed and memory usage

Adapting the Hypothesis to Changes

Adapter block — Once the structure is known...

- Estimating probabilities is easy
- Estimations can be adapted to changes (e.g. moving average)

Transition/Stop probabilities

 $S = \{abb, baab, bbaabb\}$

q	$p_q(a)$	$p_q(b)$	$p_q(\xi)$
1	2/6	4/6	0/6
2	2/6	4/6	0/6
3	1/4	0/4	3/4

But, sometimes the current structure is not good anymore

Detecting Structural Changes

Idea: "change" is *difficult to define* in general, focus on changes explained in terms of *structure*

- Given a PDFA, compute the expected number of times each state is visited when generating a string
- Given a sample, compute the average number of times strings hit any state
- If there is a significant difference, conclude the structure has changed

$$S = \{abb, baab, bbaabb\}$$

$$\begin{array}{c|cc} h_1 & h_2 & h_3 \\ \hline 6/3 & 6/3 & 4/3 \end{array}$$

- Restart structure learning when a change is detected
- Adapting probabilities may be enough, but re-learning does no damage

Outline

Learning PDFA from Data Streams

Testing Similarity in Data Streams with the Bootstrap

Adapting to Changes in the Target

Conclusion

Summary of Contributions

- Adaptation of state-merging paradigm to streaming data
- Fast convergence achieved by:
 - adaptive test scheduling
 - better similarity testing
 - efficient parameter search
- Use of sketching algorithms for implementing the bootstrap and reducing memory usage Future Work
 - Deploy real system and exploit parallelization oportunities
 - Develop further similarity tests based on the bootstrap
 - Adapt other GI algorithms to the data streams framework

Bootstrapping and Learning PDFA in Data Streams

Borja Balle, Jorge Castro, Ricard Gavaldà

International Colloquium on Grammatical Inference University of Maryland, September 2012

This work is partially supported by the PASCAL2 Network