An Algorithm to Design Prescribed Length Codes for Single-Tracked Shaft Encoders IEEE International Conference on Mechatronics 2009

B. Balle, E. Ventura, J. M. Fuertes

Universitat Politècnica de Catalunya

April 17, 2009

Problem statement

Problem

Design shaft encoders with any desired resolution

shaft encoder \equiv digital absolute shaft encoder

Applications: aerospace, aviation, computer-aided machinery, semiconductor manufacturing, robotics, medical imaging, telescopes...

Conceptual shaft encoder

Multi-tracked shaft encoder

Single-tracked shaft encoder

Single-tracked shaft encoder

Gain: reduction of moving mass

Problem Solution Comments

Construction of single-tracked encoders

Parameters:

- q: detector's arity (q = 2)
- e: desired resolution (e = 8)
- *n*: number of detectors (n = 3)

Problem

Construct a (q, n, e)-closed sequence (with $n \ge \lceil \log_q e \rceil$)

Fact

Maximal LFSRs can generate such sequences when $e = q^n - 1$ and $q = p^m$ for some prime p and integer m > 0

Problem Solution Comments

Idea behind the solution

Use sequences generated by non-maximal LFSR

Connection and seed polynomials:

$$a(x) = x^{4} - (a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0}) \in \mathbb{F}_{q}[X]$$
$$u(x) = u_{3}x^{3} + u_{2}x^{2} + u_{1}x + u_{0} \in \mathbb{F}_{q}[X]$$

Parameters:

- q: detector's arity size of the field
- e: desired resolution length of the sequence
- n: number of detectors degree of a(x)

Main result

Problem

Given q and e, find a polynomial $a(x) \in \mathbb{F}_q[X]$ of order e and minimal degree n.

Theorem

This problem can be solved algorithmically

Fact

Using the solution a(x) as connection polynomial and u(x) = 1as seed polynomial, the resulting LFSR generates a (q, n, e)-closed sequence

About our solution

Benefits:

- Works "out of the box" with *q*-ary detectors and *any* resolution
- Minimizes the number of detectors required among all sequences generated by a LFSRs
- Algorithmically efficient in practice
- Avoids extra circuitry used by previously proposed solutions

Drawbacks:

- May use more detectors than strictly necessary
- Generated codes do not satisfy Gray property

Future work

- Build a real implementation
- Estimate the number of extra detectors required
- Use the redundancy in the code for error correction purposes
- Generalize the theory to non-linear feedback logics

Questions?