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A Simple Spectral Method [HKZ09]

» n states - Yy € {1,..., n}
Discrete Homogeneous

Hidden Markov Model » k symbols - X, € {01, Ok}

» for now assume n < k

@-@-@ G—- » Forward-backward equations with

nxXmn.
© 6 e Pt

P[X1.t = W] = ] A, -+ A, 1

» Probabilities arranged into matrices H, Hy,, . . ., Hg, € Rkxk
H(j) = P[X1 = 01, X = 0j]
Hg(i,j) = P[Xl = 04, X2 = 0, X3 = O'j]

» Spectral learning algorithm for By = QA,Q1:
1. Compute SVD H = UDVT and take top n right singular vectors V,,
2. By = (HVn)*HgVy

(For simplicity, in this talk we ignore learning of initial and final vectors)



A Local Approach to Learning?

» Maximum likelihood uses the whole of the sample S = {wl, o ,WN}

and is always consistent in the realizable case

max log( o AT
o, {Ac} 2 g 1 Wti )

» The spectral method only uses local information from the sample in
H, Hq, Hp and its consistency depends on properties of H

S = {abbabba, aabaa, baaabbbabab, bbaaba,
bababbabbaaaba, abbb, ...}

Questions
» Is the spectral method minimizing a “local” loss function?

» When does this minimization yield a consistent algorithm?



Outline

Spectral Learning as Local Loss Optimization

A Convex Relaxation of the Local Loss

Choosing a Consistent Local Loss



Loss Function of the Spectral Method

» Both ingredients in the spectral method have optimization
interpretations
SVD — minyry, 1 [HVaV, —Hllr

Pseudo-inverse — ming, |[HVyBs — Ho V|

» Can formulate a joint optimization for the spectral method

min > [HVyBo — He Vi |3

{Bo}, VI V=1 ey



Properties of the Spectral Optimization

i HV,Bs — Ho Vi |2
(5 Ty 2 [HVnBe —HoVal?

» Theorem The optimization is consistent under the same conditions of
the spectral method
» The loss is non-convex due to V;,B, and constraint V| V;, =1

» Spectral method equivalent to

1. Choosing V;, using SVD
2. Optimizing {B} with fixed V;,

Intuition about the Loss Function

» Minimize the £, norm of the unexplained (finite set of) futures when a
symbol o is generated and the transition is explained using By (over a
finite set of pasts)

» Strongly based on the markovianity of the process — which generic ML
does not exploit



A Convex Relaxation of the Local Loss

» For algorithmic purposes a convex local loss function is more desirable

» A relaxation can be obtained by replacing the projection V;, with a
regularization term

MiNB 1 VIV, =T Yiex IHVaBo — HchnH%

1. fix n = |8] and take V;, =1
2. By =[Boy| -+ [Bo] and Hy = [Ho, [+ [Ho, ]

3. regularize via nuclear norm to emulate Vy,

ming, [HBx — Hx|? + 7|Bx.

» This optimization is convex and has some interesting theoretical (see
paper) and empirical properties



Experimental Results with the Convex Local Loss

Performing experiments with synthetic targets the following facts are
observed

» Tuning the regularization parameter T a better trade-off between
generalization and model complexity can be achieved

v

The largest gains when using the convex relaxation are attained for
targets suposedly hard to the spectral method
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The Hankel Matrix

For any function f: Z* — R its Hankel matrix H¢ € R¥"**" is defined as

He(p,s) = f(p-s)

I* A a b aa ab
A 103 .07 005 025
a | 03 0.05 0.25 {0 H
b | 07 i06 01:i003 To2i .
0.05 002 003 0017 0003 H

aa

ab | 025 0.23 0.02 0.11 0.12

» Blocks defined by sets of rows (prefixes P) and columns (suffixes §)
» Can parametrize the spectral method by P and § taking H € R” >

» Each pair (P, 8) defines a different local loss function



Consistency of the Local Loss

Theorem (Schiitzenberger '61) rank(H¢) = n iff f can be computed with
operators A, € R™*™

Consequences

» The spectral method is consistent iff rank(H) = rank(H¢) = n
» There always exist |P| = |S8] = n with rank(H) = n
Trade-off
> Larger P and 8 more likely to have rank(H) = n, but also require
larger samples for good estimation H
Question

» Given a sample, how to choose good P and 8?7
Answer

» Random sampling succeeds w.h.p. with || and |8| depending
polynomially on the complexity of the target
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