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A Simple Spectral Method [HKZ09]

Discrete Homogeneous
Hidden Markov Model

Y1 Y2 Y3 Y4

X1 X2 X3 X4

⋯

� n states – Yt P t1, . . . ,nu

� k symbols – Xt P tσ1, . . . ,σku

� for now assume n ¤ k

� Forward-backward equations with
Aσ P Rn�n:
PrX1:t � ws � α

J
1Aw1 � � �Awt~1

� Probabilities arranged into matrices H,Hσ1 , . . . ,Hσk P Rk�k

Hpi, jq � PrX1 � σi, X2 � σjs

Hσpi, jq � PrX1 � σi, X2 � σ, X3 � σjs

� Spectral learning algorithm for Bσ � QAσQ
�1:

1. Compute SVD H � UDVJ and take top n right singular vectors Vn
2. Bσ � pHVnq

�HσVn

(For simplicity, in this talk we ignore learning of initial and final vectors)



A Local Approach to Learning?

� Maximum likelihood uses the whole of the sample S � tw1, . . . ,wNu
and is always consistent in the realizable case

max
α1,tAσu

1

N

Ņ

i�1

logpαJ1Awi1
� � �Awiti

~1q

� The spectral method only uses local information from the sample inpH, pHa, pHb and its consistency depends on properties of H

S � tabbabba,aabaa,baaabbbabab,bbaaba,

bababbabbaaaba,abbb, . . .u

Questions
� Is the spectral method minimizing a “local” loss function?
� When does this minimization yield a consistent algorithm?



Outline

Spectral Learning as Local Loss Optimization

A Convex Relaxation of the Local Loss

Choosing a Consistent Local Loss



Loss Function of the Spectral Method

� Both ingredients in the spectral method have optimization
interpretations

SVD — minVJnVn�I }HVnV
J
n �H}F

Pseudo-inverse — minBσ }HVnBσ �HσVn}F

� Can formulate a joint optimization for the spectral method

min
tBσu,VJnVn�I

¸
σPΣ

}HVnBσ �HσVn}
2
F



Properties of the Spectral Optimization

min
tBσu,VJnVn�I

¸
σPΣ

}HVnBσ �HσVn}
2
F

� Theorem The optimization is consistent under the same conditions of
the spectral method

� The loss is non-convex due to VnBσ and constraint VJ
nVn � I

� Spectral method equivalent to
1. Choosing Vn using SVD
2. Optimizing tBσu with fixed Vn

Intuition about the Loss Function

� Minimize the `2 norm of the unexplained (finite set of) futures when a
symbol σ is generated and the transition is explained using Bσ (over a
finite set of pasts)

� Strongly based on the markovianity of the process – which generic ML
does not exploit



A Convex Relaxation of the Local Loss

� For algorithmic purposes a convex local loss function is more desirable
� A relaxation can be obtained by replacing the projection Vn with a
regularization term

mintBσu,VJnVn�I
°
σPΣ }HVnBσ �HσVn}

2
F

���
1. fix n � |S| and take Vn � I

2. BΣ � rBσ1 | � � � |Bσk s and HΣ � rHσ1 | � � � |Hσk s

3. regularize via nuclear norm to emulate Vn

minBΣ }HBΣ �HΣ}
2
F � τ}BΣ}�

� This optimization is convex and has some interesting theoretical (see
paper) and empirical properties



Experimental Results with the Convex Local Loss

Performing experiments with synthetic targets the following facts are
observed

� Tuning the regularization parameter τ a better trade-off between
generalization and model complexity can be achieved

� The largest gains when using the convex relaxation are attained for
targets suposedly hard to the spectral method
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The Hankel Matrix

For any function f : Σ� Ñ R its Hankel matrix Hf P RΣ��Σ� is defined as
Hfpp, sq � fpp � sq

Σ λ a b aa ab ...

λ 1 0.3 0.7 0.05 0.25 . . .
a 0.3 0.05 0.25 0.02 0.03 . . .
b 0.7 0.6 0.1 0.03 0.2 . . .
aa 0.05 0.02 0.03 0.017 0.003 . . .
ab 0.25 0.23 0.02 0.11 0.12 . . .
...

...
...

...
...

...
. . .

Σ λ a b aa ab ...

λ 1 0.3 0.7 0.05 0.25 . . .
a 0.3 0.05 0.25 0.02 0.03 . . .
b 0.7 0.6 0.1 0.03 0.2 . . .
aa 0.05 0.02 0.03 0.017 0.003 . . .
ab 0.25 0.23 0.02 0.11 0.12 . . .
...

...
...

...
...

...
. . .

H

Ha

Σ λ a b aa ab ...

λ 1 0.3 0.7 0.05 0.25 . . .
a 0.3 0.05 0.25 0.02 0.03 . . .
b 0.7 0.6 0.1 0.03 0.2 . . .
aa 0.05 0.02 0.03 0.017 0.003 . . .
ab 0.25 0.23 0.02 0.11 0.12 . . .
...

...
...

...
...

...
. . .

H

Ha

� Blocks defined by sets of rows (prefixes P) and columns (suffixes S)
� Can parametrize the spectral method by P and S taking H P RP�S

� Each pair pP, Sq defines a different local loss function



Consistency of the Local Loss

Theorem (Schützenberger ’61) rankpHfq � n iff f can be computed with
operators Aσ P Rn�n

Consequences
� The spectral method is consistent iff rankpHq � rankpHfq � n

� There always exist |P| � |S| � n with rankpHq � n

Trade-off
� Larger P and S more likely to have rankpHq � n, but also require
larger samples for good estimation pH

Question
� Given a sample, how to choose good P and S?

Answer
� Random sampling succeeds w.h.p. with |P| and |S| depending
polynomially on the complexity of the target
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