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* How does privacy relate to mixing in the Markov chain?

e Starting point for “Hierarchical DP”
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 Amplification from couplings
 Generalizes amplification by iteration [Feldman et al. 2018]

* Applied to SGD: exponential amplification in the strongly convex case
 The continuous time limit: diffusion mechanisms

* General RDP analysis via heat-flow argument

e New Ornstein-Uhlenbeck mechanism with better MSE than Gaussian mechanism



Amplification by Iteration in NoisySGD

Algorithm 1: Noisy Projected Stochastic Gradient Descent — NoisyProjSGD(D, ¢, n, o, &)

Input: Dataset D = (21,..., z,), loss function £ : K x D) — R, learning rate 1, noise
parameter o, initial distribution &y € P(K)
Sample o N~ f()
for i € [n] do
L XT; < HK (.2137;_1 — n(VxZ(xi_l, Zz) -+ Z)) with Z ~ N(O, 0'2[)

return z,,

e |f D and D’ differ in position |, then the last n-| iterations are postprocessing
 Can also use public data for the last r iterations
o Start from a coupling between x; and x;’ and propagate it through

 Keep all the mass as close to the diagonal as possible

[FMTT’18]



Projected Generalized Gaussian Mechanism
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Amplification by Coupling

Suppose 1, ..., yrare L-Lipschitz K(x) = IL (N (yi(x), 6°]))

ROZ(MK]_ * .KTHVK]_ °* 'Krr) <

Rényi Divergence Wasserstein Distance
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Per-index RDP in NoisySGD

Suppose the loss is Lipschitz and smooth

If loss is convex can take L=1. Then i-th person receives gi(a)-RDP with

e(ax) =0 (L)
(n — 1)02 [FMTT’18]

If loss is strongly convex can take L< 1. Then i-th person receives &i(a)-RDP with

aL(n—i)/Z

ei(a) = (0 m



Summary

* Couplings (including overlapping mixtures) provide a powerful
methodology to study privacy amplification in many settings

e Including: subsampling, postprocessing, shuffling and iteration

* Properties of divergences related to (R)DP (eg. advanced joint convexity)
are “necessary” to get tight amplification bounds

* Different types of couplings are useful (eg. maximal and small distance)



