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Amplification by Postprocessing

• When is K◦M more private than M?

• How does privacy relate to mixing in the Markov chain?

• Starting point for “Hierarchical DP”
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Our Results
• Amplification under uniform mixing 

• Relates to classical mixing conditions (eg. Dobrushin, Doeblin) and local DP properties of K
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Our Results
• Amplification under uniform mixing 

• Relates to classical mixing conditions (eg. Dobrushin, Doeblin) and local DP properties of K


• Eg. if M is 𝜀-DP and K is                -LDP, them K◦M is                             -DP

• Amplification from couplings 

• Generalizes amplification by iteration [Feldman et al. 2018]


• Applied to SGD: exponential amplification in the strongly convex case

• The continuous time limit: diffusion mechanisms 

• General RDP analysis via heat-flow argument


• New Ornstein-Uhlenbeck mechanism with better MSE than Gaussian mechanism
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Amplification by Iteration in NoisySGD

• If D and D’ differ in position j, then the last n-j iterations are postprocessing


• Can also use public data for the last r iterations


• Start from a coupling between xj and xj’ and propagate it through


• Keep all the mass as close to the diagonal as possible

2018, Theorem 22] by accounting for the Lipschitz properties of the underlying kernels. Additionally,
our version introduces an explicit dependence on the W1 distances along an “interpolating” path
between the initial distributions µ, ⌫ 2 P(Rd) which can later be optimized for different applications.

Theorem 4. Let ↵ � 1, µ, ⌫ 2 P(Rd) and let K ✓ Rd be a convex set. Suppose K1, . . . ,Kr 2
K(Rd,Rd) are Markov operators where Yi ⇠ Ki(x) is obtained as7 Yi = ⇧K( i(x) + Zi) with Zi ⇠
N (0,�2I), where the maps  i : K! Rd are L-Lipschitz for all i 2 [r]. For any µ0, µ1, . . . , µr 2 P(Rd)
with µ0 = µ and µr = ⌫ we have

R↵(µK1 · · ·Krk⌫K1 · · ·Kr) 
↵L2

2�2

rX

i=1

L2(r�i)W1(µi, µi�1)
2 . (2)

Furthermore, if L  1 and W1(µ, ⌫) = �, then

R↵(µK1 · · ·Krk⌫K1 · · ·Kr) 
↵�2Lr+1

2r�2
. (3)

Note how taking L = 1 in the bound above we obtain ↵�
2

2r�2 = O(1/r), which matches [Feldman
et al., 2018, Theorem 1]. On the other hand, for L strictly smaller than 1, the analysis above shows
that the amplification rate is O(Lr+1/r) as a consequence of the maps  i being strict contractions,
i.e. k i(x) �  i(y)k < kx � yk. We can now leverage this fact to improve the per-person privacy
guarantees of noisy projected SGD (Algorithm 1) in the case where the loss function is smooth and
strongly convex.

Algorithm 1: Noisy Projected Stochastic Gradient Descent — NoisyProjSGD(D, `, ⌘,�, ⇠0)

Input: Dataset D = (z1, . . . , zn), loss function ` : K⇥ D! R, learning rate ⌘, noise
parameter �, initial distribution ⇠0 2 P(K)

Sample x0 ⇠ ⇠0
for i 2 [n] do

xi  ⇧K (xi�1 � ⌘(rx`(xi�1, zi) + Z)) with Z ⇠ N (0,�2I)

return xn

A function f : K ✓ Rd ! R defined on a convex set is �-smooth if it is continuously differentiable
and rf is �-Lipschitz, i.e., krf(x)�rf(y)k  �kx� yk, and is ⇢-strongly convex if the function
g(x) = f(x) � ⇢

2
kxk2 is convex. When we say that a loss function ` : K ⇥ D ! R satisfies a

property (e.g. smoothness) we mean the property is satisfied by `(·, z) for all z 2 D. Furthermore,
we recall from [Feldman et al., 2018] that a mechanism M : Dn ! X satisfies (↵, ✏)-RDP at index i
if R↵(M(D)kM(D0))  ✏ holds for any pair of databases D and D0 differing on the ith coordinate.

Theorem 5. Let ` : K ⇥ D ! R be a C-Lipschitz, �-smooth, ⇢-strongly convex loss function. If
⌘  2

�+⇢
, then NoisyProjSGD(D, `, ⌘,�, ⇠0) satisfies (↵,↵✏i)-RDP at index i, where ✏n = 2C

2

�2 and
✏i =

2C
2

(n�i)�2 (1� 2⌘�⇢

�+⇢
)
n�i+1

2 for 1  i  n� 1.

Since [Feldman et al., 2018, Theorem 23] shows that for smooth Lipschitz loss functions the
guarantee at index i of NoisyProjSGD is given by ✏i = O( C

2

(n�i)�2 ), our result provides an exponential

7Here ⇧K(x) = argminy2K kx� yk denotes the projection operator onto the convex set K ✓ Rd.

7
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Projected Generalized Gaussian Mechanism

K(x) = Π𝕂(𝒩(ψ(x), σ2I))

ψ : ℝd → ℝd

x

ψ(x)

ψ(x) + Z

Π𝕂(ψ(x) + Z)
𝕂



Amplification by Coupling
Suppose 𝜓1, …, 𝜓r are L-Lipschitz Ki(x) = Π𝕂(𝒩(ψi(x), σ2I))

2018, Theorem 22] by accounting for the Lipschitz properties of the underlying kernels. Additionally,
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between the initial distributions µ, ⌫ 2 P(Rd) which can later be optimized for different applications.
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𝒫(𝕂)

μ = μ0

ν = μr

μ1

μ2 …

Rényi Divergence Wasserstein Distance

𝕂 × 𝕂

π |y − y′�| ≤ w

“interpolating 
path”

Applications:

• Bound L

• Optimize path



Per-index RDP in NoisySGD

ϵi(α) = O ( α
(n − i)σ2 )

Suppose the loss is Lipschitz and smooth

If loss is convex can take L=1. Then i-th person receives 𝜀i(𝛼)-RDP with

If loss is strongly convex can take L< 1. Then i-th person receives 𝜀i(𝛼)-RDP with

ϵi(α) = O ( αL(n−i)/2

(n − i)σ2 )

[FMTT’18]



Summary

• Couplings (including overlapping mixtures) provide a powerful 
methodology to study privacy amplification in many settings


• Including: subsampling, postprocessing, shuffling and iteration


• Properties of divergences related to (R)DP (eg. advanced joint convexity) 
are “necessary” to get tight amplification bounds


• Different types of couplings are useful (eg. maximal and small distance)


