Privacy Amplification by Mixing and **Diffusion Mechanisms**

Borja Balle, Gilles Barthe, Marco Gaboardi, Joseph Geumlek

Mechanism

Post-processing (Markov operator)

When is KoM more private than M?

When is KoM more private than M?

- When is KoM more private than M?
- How does privacy relate to mixing in the Markov chain?

- When is KoM more private than M?
- How does privacy relate to mixing in the Markov chain?

- When is KoM more private than M?
- How does privacy relate to mixing in the Markov chain?
- Starting point for "Hierarchical DP"

Amplification under uniform mixing

- Relates to classical mixing conditions (eg. Dobrushin, Doeblin) and local DP properties of K • Eg. if M is ε -DP and K is $\log \frac{1}{1-\gamma}$ -LDP, them K \circ M is $\log(1+\gamma(e^{\varepsilon}-1))$ -DP

Our Results

Amplification under uniform mixing

- Relates to classical mixing conditions (eg. Dobrushin, Doeblin) and local DP properties of K • Eg. if M is ε -DP and K is $\log \frac{1}{1-\gamma}$ -LDP, them K \circ M is $\log(1+\gamma(e^{\varepsilon}-1))$ -DP

Amplification from couplings

- Generalizes amplification by iteration [Feldman et al. 2018]
- Applied to SGD: exponential amplification in the strongly convex case

Our Results

Amplification under uniform mixing

- Relates to classical mixing conditions (eg. Dobrushin, Doeblin) and local DP properties of K • Eg. if M is ε -DP and K is $\log \frac{1}{1-\gamma}$ -LDP, them K \circ M is $\log(1+\gamma(e^{\varepsilon}-1))$ -DP

Amplification from couplings

- Generalizes amplification by iteration [Feldman et al. 2018]
- Applied to SGD: exponential amplification in the strongly convex case

The continuous time limit: diffusion mechanisms

- General RDP analysis via heat-flow argument
- New Ornstein-Uhlenbeck mechanism with better MSE than Gaussian mechanism

Our Results

Amplification by Iteration in NoisySGD

parameter σ , initial distribution $\xi_0 \in \mathcal{P}(\mathbb{K})$ Sample $x_0 \sim \xi_0$ for $i \in [n]$ do $| x_i \leftarrow \Pi_{\mathbb{K}} (x_{i-1} - \eta(\nabla_x \ell(x_{i-1}, z_i) + Z)) \text{ with } Z \sim \mathcal{N}(0, \sigma^2 I)$ return x_n

- If D and D' differ in position j, then the last n-j iterations are postprocessing
 - Can also use public data for the last r iterations
- Start from a coupling between x_i and x_i' and propagate it through
 - Keep all the mass as close to the diagonal as possible

- **Algorithm 1:** Noisy Projected Stochastic Gradient Descent NoisyProjSGD $(D, \ell, \eta, \sigma, \xi_0)$ **Input:** Dataset $D = (z_1, \ldots, z_n)$, loss function $\ell : \mathbb{K} \times \mathbb{D} \to \mathbb{R}$, learning rate η , noise

Projected Generalized Gaussian Mechanism

$$\begin{split} K(x) &= \Pi_{\mathbb{K}}(\mathcal{N}(\psi(x),\sigma^2 I)) \\ \psi: \mathbb{R}^d \to \mathbb{R}^d \end{split}$$

Amplification by Coupling

Suppose ψ_1, \ldots, ψ_r are L-Lipschitz

Rényi Divergence

Applications:

- Bound L
- Optimize path

 $K_i(x) = \prod_{\mathbb{K}} (\mathcal{N}(\psi_i(x), \sigma^2 I))$

Wasserstein Distance

Per-index RDP in NoisySGD

Suppose the loss is Lipschitz and smooth

 $\epsilon_i(\alpha) = O$

If loss is **convex** can take L=1. Then i-th person receives $\varepsilon_i(\alpha)$ -RDP with

$$\left(\frac{\alpha}{(n-i)\sigma^2}\right)$$

|FMTT'18|

If loss is strongly convex can take L< 1. Then i-th person receives $\varepsilon_i(\alpha)$ -RDP with

$$O\left(\frac{\alpha L^{(n-i)/2}}{(n-i)\sigma^2}\right)$$

Summary

- Couplings (including overlapping mixtures) provide a powerful methodology to study privacy amplification in many settings
 - Including: subsampling, postprocessing, shuffling and iteration
- Properties of divergences related to (R)DP (eg. advanced joint convexity) are "necessary" to get tight amplification bounds
- Different types of couplings are useful (eg. maximal and small distance)