Spectral Learning of General Weighted Automata via Constrained Matrix Completion

Borja Balle¹ Mehryar Mohri²

¹Universitat Politècnica de Catalunya

² Courant Institute of Mathematical Sciences and Google Research

NIPS 2012, Lake Tahoe

The Problem – Regression over Strings

Data: i.i.d. sample S with strings $+$ real labels from distribution D

 $S = (abbca, 3.4)(baa, 0.6)(ccaaaabba, -2.9)(abba, 1.1) ...$

Goal: Learn a regressor $\hat{f} : \Sigma^{\star} \to \mathbb{R}$ with small generalization error

$$
\mathbb{E}_{(\mathsf{x},\mathsf{y})\sim\mathcal{D}}\left[\ell(\hat{\mathsf{f}}(\mathsf{x}),\mathsf{y})\right]
$$

Examples:

- Reward modeling in reinforcement learning
- \rightarrow Biological measurement as a function of DNA/AA sequence
- **Learn from expert labeling in natural language processing**

Hypothesis Class: Weighted Finite Automata (WFA)

Graphical representation

Algebraic representation

$$
\boldsymbol{\alpha}^{\top} = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \quad \boldsymbol{\beta}^{\top} = \begin{bmatrix} 1 & -1 \end{bmatrix}
$$

$$
\mathbf{A}_{\alpha} = \begin{bmatrix} 3/4 & 0 \\ 0 & 1/3 \end{bmatrix} \quad \mathbf{A}_{b} = \begin{bmatrix} 6/5 & 2/3 \\ 3/4 & 1 \end{bmatrix}
$$

Compute function $f: \Sigma^* \to \mathbb{R}$:

 $f(x_1 \cdots x_t) = \boldsymbol{\alpha}^\top \mathbf{A}_{x_1} \cdots \mathbf{A}_{x_t} \boldsymbol{\beta}$ (n

 $2|\Sigma| + 2n$) parameters

Why WFA?

- **Expressive well-studied class [DKV09]**
- Rich family of algorithms [Mohri09] (weighted minimization, determinization, ϵ -removal)
- Widely used in applications [MPR08,AK09,BGC09,KM09] (speech recognition, image processing, OCR, system testing)

Overview

Our Result: A supervised learning algorithm for WFA that combines spectral learning and matrix completion

In the rest of the talk I will...

- 1. Recall the spectral method in a nutshell
- 2. Describe a family of learning algorithms
- 3. Give a generalization bound

Spectral Learning in a Nutshell

(Workshop on Friday!)

Key Ideas:

- \triangleright Matrix of observables \bf{M} contains sufficient information
- \triangleright SVD decomposition of M is used to recover model
- Computation is noise tolerant

General Scheme:

Spectral Learning by...

Has been applied to many models:

- Sequential models [HKZ09,BDR09,SBG10,BSG10,BQC11,Bailly11,BQC12]
- ▶ Tree-like structures [BHD10,PSX11,ACHKSZ11,LQBC12,CSCFU12,DRCFU12]
- Other graphical models [SBSGS10,AFHKL12,AHK12,PSITX12]

In the particular case of WFA M is a well-known matrix...

The Hankel Matrix

Definition: Hankel matrix \mathbf{H}_f of a function $f : \Sigma^\star \to \mathbb{R}$ is such that

- rows are indexed by prefixes $u \in \mathcal{P}$
- columns are indexes by suffixes $v \in S$
- napportively are evaluations $\mathbf{H}_f(u, v) = f(uv)$

Example: $\Sigma = \{a, b\}$ and $f(x) = #$ of a's in x

$$
\mathcal{P} = \{a, b, aa\} \text{ (rows)}
$$
\n
$$
\mathcal{S} = \{\varepsilon, a, b\} \text{ (columns)}
$$
\n
$$
\mathbf{H}_f = \begin{bmatrix} a & b \\ b & 0 & 1 & 0 \\ a & 2 & 3 & 2 \end{bmatrix}
$$

Note: Entrywise redundancies $w = u_1v_1 = u_2v_2 \Rightarrow H_f(u_1, v_1) = H_f(u_2, v_2) = f(w)$

Spectral Learning for WFA

In the particular case of WFA

- \blacktriangleright Hankel matrices play the role of M
- Redundancies (entrywise & rank) are relevant
- \blacktriangleright f computed by WFA with rank (\mathbf{H}_f) states (when \mathcal{P} , \mathcal{S} big enough)

Example: $\Sigma = \{a, b\}$ and $f(x) = #$ of a's in x

$$
\mathcal{P} = \{a, b, aa\} \text{ (rows)}
$$
\n
$$
\mathcal{S} = \{\varepsilon, a, b\} \text{ (columns)}
$$
\n
$$
\mathbf{H}_f = \begin{bmatrix} a & b \\ b & 1 & 2 \\ aa & 2 & 3 & 2 \end{bmatrix}
$$
\n
$$
\mathbf{H}_f = \begin{bmatrix} a & b \\ b & 1 & 0 \\ ca & 2 & 3 & 2 \end{bmatrix}
$$

But: how do you obtain a Hankel matrix in the regression setting?

Missing Entries

In usual applications...

entries in H_f are empirical counts, e.g. $f(x) = Pr[x]$

But in this case...

entries in H_f are labels observed in the sample

$$
\begin{array}{|c|c|} \hline \text{(bab,1)} \\ \text{(bbb,0)} \\ \text{(aaa,3)} \\ \text{(a,1)} \\ \text{(ab,1)} \\ \text{(aa,2)} \\ \text{(aba,2)} \\ \text{(bb,0)} \hline \end{array} \quad \longrightarrow \quad \begin{array}{|c|c|} \begin{array}{c} \epsilon & a & b \\ 1 & 2 & 1 \\ * & * & 0 \\ a \end{array} \\ \hline \begin{array}{c} \text{a} & 1 & 2 & 1 \\ * & * & 0 \\ 2 & 3 & * \\ * & * & 1 \\ * & * & 1 \\ 0 & * & 0 \end{array} \hline \end{array}
$$

Constrained Matrix Completion

Solution: Apply *matrix completion* to $\hat{\bm{\mathsf{H}}}_\text{f}$ [CR09,CP10,CT10,FSSS11,Recht11,FS11,NW12]

But: Constrain completed matrix to be Hankel

Algorithm: Use convex optimization

$$
\hat{\mathbf{H}} = \underset{\mathbf{H} \in \mathbb{H}}{\text{argmin}} \ \ell(\mathbf{H}; \mathbf{S}) + \lambda \cdot \mathbf{R}(\mathbf{H})
$$

- \triangleright Loss ℓ controls agreement of H with sample
- Regularizer R controls complexity of H (e.g. schatten norm)
- \rightarrow $H \in \mathbb{H}$ imposes *convex constains* (equalities between entries)

(Double) Role of Regularization:

- Solve ill-posedness of matrix completion problem
- \triangleright Less complex $\hat{\mathbf{H}}$ will lead to simpler WFA

A Family of Algorithms

Family of algorithms parametrized by:

- \triangleright Choice of rows and columns in \overline{H}
- A constrained matrix completion algorithm
- Regularization parameters

Question: Can these algorithms provably succeed?

Generalization Bound

Hypotheses:

- Reasonable assumptions on distribution $(x, y) \sim D$
- \blacktriangleright Completion loss $\ell(\mathbf{H};\mathrm{S}) = \sum_{(\mathrm{x},\mathrm{y}) \in \mathrm{S}} |\mathrm{f}_{\mathbf{H}}(\mathrm{x}) \mathrm{y}|$
- \blacktriangleright Completion regularizer $R(\mathbf{H}) = \|\mathbf{H}\|_{\mathrm{F}}^2$

Theorem: with high probability over $S \sim \mathcal{D}^m$, the output f_S of the algorithm satisfies:

$$
\mathbb{E}_{(x,y)\sim \mathcal{D}}\left[|f_S(x)-y|\right]\leqslant \mathbb{\hat{E}}_S\big[|f_S(x)-y|\big]+O\left(\frac{\ln m}{m^{1/3}}\right)
$$

Proof: joint *stability analysis* of matrix completion and spectral learning

Want to Know More?

Poster T47

Spectral Learning of General Weighted Automata via Constrained Matrix Completion

Borja Balle¹ Mehryar Mohri²

¹Universitat Politècnica de Catalunya

² Courant Institute of Mathematical Sciences and Google Research

NIPS 2012, Lake Tahoe