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The Problem – Regression over Strings

Data: i.i.d. sample S with strings � real labels from distribution D

S � pabbca, 3.4q pbaa, 0.6q pccaaaabba,�2.9q pabba, 1.1q . . .

Goal: Learn a regressor f̂ : Σ� Ñ R with small generalization error

Epx,yq�D

�
`pf̂pxq,yq

�

Examples:

� Reward modeling in reinforcement learning

� Biological measurement as a function of DNA/AA sequence

� Learn from expert labeling in natural language processing



Hypothesis Class: Weighted Finite Automata (WFA)
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Compute function f : Σ� Ñ R:

fpx1 � � � xtq � αJAx1 � � �Axtβ pn2|Σ| � 2nq parameters

Why WFA?

� Expressive well-studied class [DKV09]

� Rich family of algorithms [Mohri09]

(weighted minimization, determinization, ε-removal)

� Widely used in applications [MPR08,AK09,BGC09,KM09]

(speech recognition, image processing, OCR, system testing)



Overview

Our Result: A supervised learning algorithm for WFA that combines
spectral learning and matrix completion

In the rest of the talk I will...

1. Recall the spectral method in a nutshell

2. Describe a family of learning algorithms

3. Give a generalization bound



Spectral Learning in a Nutshell
(Workshop on Friday!)

Key Ideas:

� Matrix of observables M contains sufficient information

� SVD decomposition of M is used to recover model

� Computation is noise tolerant

General Scheme:
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Spectral Learning by...

Has been applied to many models:

� Sequential models
[HKZ09,BDR09,SBG10,BSG10,BQC11,Bailly11,BQC12]

� Tree-like structures
[BHD10,PSX11,ACHKSZ11,LQBC12,CSCFU12,DRCFU12]

� Other graphical models
[SBSGS10,AFHKL12,AHK12,PSITX12]

In the particular case of WFA M is a well-known matrix...



The Hankel Matrix

Definition: Hankel matrix Hf of a function f : Σ� Ñ R is such that

� rows are indexed by prefixes u P P

� columns are indexes by suffixes v P S

� entries are evaluations Hfpu, vq � fpuvq

Example: Σ � ta,bu and fpxq � # of a’s in x

P � ta,b,aau (rows)
S � tε,a,bu (columns)

Hf �

�
�
ε a b

a 1 2 1
b 0 1 0
aa 2 3 2

�
�

Note: Entrywise redundancies
w � u1v1 � u2v2 ñ Hfpu1, v1q � Hfpu2, v2q � fpwq



Spectral Learning for WFA

In the particular case of WFA

� Hankel matrices play the role of M

� Redundancies (entrywise & rank) are relevant

� f computed by WFA with rankpHfq states
(when P, S big enough)

Example: Σ � ta,bu and fpxq � # of a’s in x

P � ta,b,aau (rows)
S � tε,a,bu (columns)
rankpHfq � 2

Hf �

�
�
ε a b

a 1 2 1
b 0 1 0
aa 2 3 2

�
�

But: how do you obtain a Hankel matrix in the regression setting?



Missing Entries
In usual applications...
entries in Hf are empirical counts, e.g. fpxq � Prrxs
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But in this case...
entries in Hf are labels observed in the sample
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Constrained Matrix Completion
Solution: Apply matrix completion to Ĥf
[CR09,CP10,CT10,FSSS11,Recht11,FS11,NW12]

But: Constrain completed matrix to be Hankel

Algorithm: Use convex optimization

Ĥ � argmin
HPH

`pH;Sq � λ � RpHq

� Loss ` controls agreement of H with sample

� Regularizer R controls complexity of H (e.g. schatten norm)

� H P H imposes convex constains (equalities between entries)

(Double) Role of Regularization:

� Solve ill-posedness of matrix completion problem

� Less complex Ĥ will lead to simpler WFA



A Family of Algorithms
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Family of algorithms parametrized by:

� Choice of rows and columns in H

� A constrained matrix completion algorithm

� Regularization parameters

Question: Can these algorithms provably succeed?



Generalization Bound

Hypotheses:

� Reasonable assumptions on distribution px,yq � D

� Completion loss `pH;Sq �
°

px,yqPS |fHpxq � y|

� Completion regularizer RpHq � }H}2
F

Theorem: with high probability over S � Dm, the output fS of the
algorithm satisfies:

Epx,yq�D r|fSpxq � y|s ¤ ÊSr|fSpxq � y|s �O
�

lnm

m1{3




Proof: joint stability analysis of matrix completion and spectral learning



Want to Know More?

Poster T47
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