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Notation

� Finite alphabet Σ � tσ1,σ2, . . . ,σru

� Free monoid Σ� � tε,a,b,aa,ab,ba,bb,aaa, . . .u

� Functions over strings f : Σ� Ñ R
� Examples:

fpxq � Prxs (probability of a string)

fpxq � PrxΣ�s (probability of a prefix)

fpxq � Irx P Ls (characteristic function of language L)

fpxq � |x|a (number of a’s in x)

fpxq � Er|w|xs (expected number of substrings equal to x)



Weighted Automata

� Class of WA parametrized by alphabet Σ and number of states n

A � 〈α1,α8, tAσuσPΣ〉

α1 P Rn (initial weights)

α8 P Rn (terminal weights)

Aσ P Rn�n (transition weights)

� Computes a function fA : Σ� Ñ R

fApxq � fApx1 � � � xtq � α
J
1Ax1 � � �Axtα8 � αJ1Axα8



Examples – Probabilistic Finite Automata

� Compute / generate distributions over strings Prxs

αJ1 � r0.3 0 0.7s

αJ8 � r0.2 0 0.2s

Aa �

�
� 0 0 0.2

0 0.75 0
0 0.25 0

�
�

0.3 0.2

0

a, 0.2

a, 0.25 ∣ b, 0.15

a, 0.75

b, 0.25

b, 0.3

b, 0.4

b, 0.2

0.3 0.7



Examples – Hidden Markov Models

� Generates infinite strings, computes probabilities of prefixes PrxΣ�s
� Emission and transition are conditionally independent given state

αJ1 � r0.3 0.3 0.4s

αJ8 � r1 1 1s

Aa � Oa � T

T �

�
� 0 0.7 0.3

0 0.75 0.25
0 0.4 0.6

�
�

Oa �

�
� 0.3 0 0

0 0.9 0
0 0 0.5

�
�

0.3

0.4

0.75

0.25

0.7

0.6 a, 0.5
b, 0.5

a, 0.3
b, 0.7

a, 0.9
b, 0.1



Examples – Probabilistic Finite State Transducers

� Compute conditional probabilities Pry|xs � αJ1A
y
xα8 for pairs

px,yq P pΣ� ∆q�, must have |x| � |y|

� Can also assume models factorized like in HMM

αJ1 � r0.3 0 0.7s

αJ8 � r1 1 1s

AbB �

�
� 0.2 0.4 0

0 0 1
0 0.75 0

�
�

A/a, 0.1 ∣ A/b, 0.9

B/a, 0.25 ∣ B/b, 0.75 ∣ A/b, 0.15

A/a, 0.75

A/b, 0.25 ∣ B/b, 1

B/b, 0.4 B/a, 0.4

A/b, 0.85
B/b, 0.2

0.3 0.7



Examples – Deterministic Finite Automata

� Compute membership in a regular language

αJ1 � r1 0 0s

αJ8 � r0 0 1s

Aa �

�
� 1 0 0

0 1 0
1 0 0

�
�

1

2

3
b

a

a

a

b



Facts About Weighted Automata (I)

Invariance Under Change of Basis

� Let Q P Rn �n be invertible

� Let QAQ�1 �
〈
Q�Jα1,Qα8, tQAσQ

�1u
〉

� Then fA � fQAQ�1 since

pαJ1Q
�1qpQAx1Q

�1q � � � pQAxtQ
�1qpQα8q � α

J
1Ax1 � � �Axtα8

Example

Aa �

�
0.5 0.1
0.2 0.3

�
Q �

�
0 1
�1 0

�
QAaQ

�1 �

�
0.3 �0.2
�0.1 0.5

�

Consequences

� For learning WA it is not necessary to recover original parametrization

� PFA is only one way to parametrize probability distributions

� Unfortunately, given A it is undecidable whether @x fApxq ¥ 0



Facts About Weighted Automata (II)
Forward–Backward Factorization

� A defines forward and backward maps fFA, fBA : Σ� Ñ Rn
� Such that for any splitting x � y � z one has fApxq � f

F
Apyq � f

B
Apzq

fFApyq � α
J
1Ay and fBApzq � Azα8

Example

� For a PFA A and i P rns, one has
� rfFApyqsi � rαJ1Aysi � Pry , h|y|�1 � is

� rfBApzqsi � rAzα8si � Prz |h � is

Consequences

� String structure has direct relation to computation structure
� In particular, strings sharing prefixes or suffixes share computations
� Information on Aa can be recovered from fApyazq, f

F
Apyq, and fBApzq:

fApyazq � f
F
ApyqAaf

B
Apzq
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Learning Weighted Automata

Goal

� Given some kind of (partial) information about f : Σ� Ñ R, find a
weighted automata A such that f � fA

Types of Target

� Realizable case, f � fB – exact learning, PAC learning

� Angostic setting, arbitrary f – agnostic learning, generalization bounds

Information on the Target

� Total knowledge (e.g. via queries) – algorithmic/compression problem

� Approximate global knowledge – noise filtering problem

� Exact local knowledge (e.g. random sampling) – interpolation problem
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Precedents and Alternative Approaches
Related Work

� Subspace methods for identification of linear dynamical systems
[Overschee–Moor ’94]

� Results on identifiability and learning of HMM and phylogenetic trees
[Chang ’96, Mossel–Roch ’06]

� Query learning algorithms for DFA and Multiplicity Automata
[Angluin ’87, Bergadano–Varrichio ’94]

Other Spectral Methods

This presentation does not cover recent spectral learning methods for:

� Mixture models [Anandkumar et al. ’12]

� Latent tree graphical models [Parikh et al. ’11, Anandkumar et al. ’11]

� Tree automata [Bailly et al. ’10]

� Probabilistic context-free grammars [Cohen et al. ’12]

� Models with continuous observables or feature maps [Song et al. ’10]



The Hankel Matrix

� The Hankel matrix of f : Σ� Ñ R is Hf P RΣ��Σ�

� For y, z P Σ�, entries are defined by Hfpy, zq � fpy � zq

� Given P, S � Σ� will consider sub-blocks HfpP, Sq P RP�S

� Very redundant representation for f – fpxq appears |x| � 1 times

�
����������

ε a b aa ab ���

ε
...

...

a � � � � � �
... � � � fpaabq

b
...

aa � � � � � � fpaabq

ab

...

�
����������



Schützenberger’s Theorem

Theorem: rankpHfq ¤ n if and only if f � fA with |A| � n
In particular, rankpHfq is size of smallest WA for f

Proof (ð)

� Write F � fFApΣ
�q P RΣ��n and B � fBApΣ

�q P Rn�Σ�

� Note Hf � F � B

� Then, rankpHfq ¤ n

Proof (ñ)

� Assume rankpHfq � n

� Take rank factorization Hf � F � B with F P RΣ��n and B P Rn�Σ�

� Let αJ1 � Fpε, rnsq and α8 � Bprns, εq (note αJ1 α8 � fpεq)

� Let Aσ � Bprns,σ �Σ
�q �B� P Rn�n (note Aσ �Bprns, xq � Bprns,σ �xq)

� By induction on |x| we get αJ1Axα8 � fpxq
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Towards the Spectral Method

Remarks about the pñq proof

� A finite sub-block H � HfpP, Sq such that rankpHq � rankpHfq is
sufficient – pP, Sq is called a basis when also ε P PX S

� A compatible factorization of H and Hσ � HfpP,σ � Sq is needed –
Aσ � Bprns,σ � Sq � Bprns, Sq

� (in fact, for all σ)

Another expression for Aσ
� Instead of factorizing H and Hσ, do . . .

� Factorize only H � B � F and note Hσ � B �Aσ � F

� Solving yields Aσ � B
� �Hσ � F

�

� Also, αJ1 � Hpε, Sq � F� and α8 � B� �HpP, εq



The Spectral Method

Idea: Use SVD decomposition to obtain a factorization of H

� Given H and Hσ over basis pP, Sq

� Compute compact SVD as H � USVJ with

U P RP�n S P Rn�n V P RS�n

� Let Aσ � pHVq�pHσVq – corresponds to rank factorization
H � pHVqVJ

Properties

� Easy to implement: just linear algebra

� Fast to compute: Opmaxt|P|, |S|u3q

� Noise tolerant: Ĥ � H and Ĥσ � Hσ implies Âσ � Aσ
ñ learning!
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Overview (of a biased selection)

Direct Applications

� Learning stochastic rational languages – any probability distribution
computed by WA

� Learning probabilistic finite state transducers – learn Pry|xs from
examples pairs px,yq

Composition with Other Methods

� Combination with matrix completion for learning non-stochastic
functions – when f : Σ� Ñ R is not related to a probability distribution

Algorithmic and Miscellaneous Problems

� Interpretation as an optimization problem – from linear algebra to
convex optimization

� Finding a basis via random sampling – knowing pP, Sq is a prerequisite
for learning



Learning Stochastic Rational Languages [HKZ’09, BDR’09, etc.]

Idea: Given sample from probability distribution fA over Σ� find a WA Â

Algorithms

� Given a basis, use the sample to compute Ĥ and Ĥσ
� Apply the spectral method to obtain Âσ

Properties

� Can PAC learn any distribution computed by a WA (w.r.t. L1

distance)

� May not output a probability distribution

� Sample bound polyp1{ε, logp1{δq,n, |Σ|, |P|, |S|, 1{snpHq, 1{snpBqq

Open problems / Future Work

� Learn models guaranteed to be probability distributions [Bailly ’11]

� Study inference problems in such models

� Provide smoothing procedures, PAC learn w.r.t. KL

� How do “infrequent” states in the target affect learning?



Learning Probabilistic Finite State Transducers [BQC’11]

Idea: Learn a function f : pΣ� ∆q� Ñ R computing Pry|xs

Learning Model

� Input is sample of aligned sequences pxi,yiq, |xi| � |yi|

� Drawn i.i.d. from distribution Prx,ys � Pry|xsDpxq
� Want to assume as little as possible on D

� Performance measured against x generated from D

Properties

� Assuming independece Aδσ � Oδ � Tσ, sample bound scales mildly
with input alphabet |Σ|

� For applications, need to align sequences prior to learning – or use
iterative procedures

Open problems / Future Work

� Deal with alignments inside the model

� Smoothing and inference questions (again!)



Matrix Completion and Spectral Learning [BM’12]

Idea

� In stochastic learning tasks (e.g. Prxs, PrxΣ�s, Er|w|xs) a sample S
yields global approximate knowledge f̂S

� Supervised learning setup is given pairs px, fpxqq, where x � D

� But spectral method needs (approximate) information on sub-blocks

� Matrix completion finds missing entries under contraints (e.g. low
rank Hankel matrix), then apply spectral method

 
pxi, fpxiqq

(
−Ñ

�
�

2 � 0
1 � �
0 1 4

�
� matrix completion−Ñ

�
�

2 1.1 0
1 2.3 1.1
0 1 4

�
�

Result: Generalization bounds for some MC + SM combinations

Open problems / Future Work

� Design specific convex optimization algorithm for completion problem

� Analyze combination with other completion algorithms



An Optimization Point of View [BQC’12]

Idea: Replace linear algebra with optimization primitives – make it possible
to use the “ML optimization toolkit”

Algorithms

� Spectral optimization: mintAσu,VJnVn�I
°
σPΣ }HVnAσ �HσVn}

2
F

� Convex relaxation: minAΣ }HAΣ �HΣ}
2
F � τ}AΣ}�

Properties

� Equivalent in some situations and choice of parameters

� Experiments show convex relaxation can be better in cases known to
be difficult for the spectral method

Open problems / Future Work

� Design problem-specific optimization algorithms

� Constrain learned models imposing further regularizations, e.g.
sparsity



Finding a Basis [BQC ’12]

Idea: Choose a basis in a data-driven manner – as oposed to using a fixed
set of prefixes and suffixes

Algorithm

Input: strings px1, . . . , xNq
Initialize PÐ ∅, SÐ ∅
for i � 1 to N do

Choose 0 ¤ t ¤ |xi| u.a.r.
Split xi � uivi with |ui| � t
and |vi| � |xi| � t
Add ui to P and vi to S

end for

Result

� xi i.i.d. from distribution D
over Σ� with full support

� f � fA with }Aσ} ¤ 1

� If N ¥ Cηpf,Dq logp1{δq then
pP, Sq is basis w.h.p.

Open problems / Future Work

� Do something more smart and practical

� Find smaller basis containing shorter strings
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Take-home Message

� Efficient, easy to implement learning method

� Alternative to EM not suffering from local minima

� Can be extended to many probabilistic (and some non-probabilistic)
models

� Comes with theoretical analysis, quantifies hardness of models,
provides intuitions

� Lots of interesting open problems, theoretical and practical
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