Learning Automata with Hankel Matrices

Borja Balle

[Disclaimer: Work done before joining Amazon]
Brief History of Automata Learning

- [1967] Gold: Regular languages are learnable in the limit
- [1987] Angluin: Regular languages are learnable from queries
- [1993] Pitt & Warmuth: PAC-learning DFA is NP-hard
- [1994] Kearns & Valiant: Cryptographic hardness
- [90’s, 00’s] Clark, Denis, de la Higuera, Oncina, others: Combinatorial methods meet statistics and linear algebra
Talk Outline

• Exact Learning
 – Hankel Trick for Deterministic Automata
 – Angluin’s L* Algorithm

• PAC Learning
 – Hankel Trick for Weighted Automata
 – Spectral Learning Algorithm

• Statistical Learning
 – Hankel Matrix Completion
The Hankel Matrix

\[
H \in \mathbb{R}^{\Sigma^* \times \Sigma^*}
\]

\[
p \cdot s = p' \cdot s' \Rightarrow H(p, s) = H(p', s')
\]

\[
f : \Sigma^* \rightarrow \mathbb{R}
\]

\[
H_f(p, s) = f(p \cdot s)
\]
Theorem (Myhill-Nerode ‘58)
The number of distinct rows of a binary Hankel matrix H equals the minimal number of states of a DFA recognizing the language of H.
From Hankel Matrices to DFA

\[
\begin{bmatrix}
\epsilon & a & b & aa & ab & ba & bb & \cdots \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & \cdots \\
a & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
b & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
aa & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
ab & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
ba & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
bb & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\vdots & & & & & & & \\
aba & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
abb & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\vdots & & & & & & & \\
\end{bmatrix}
\]

Diagram:

- States: \(\epsilon\), \(a\), \(ab\)
- Transitions:
 - \(\epsilon\) to \(a\)
 - \(a\) to \(ab\)
 - \(ab\) to \(\epsilon\)

\(\delta(\epsilon, a) = a\)
\(\delta(a, b) = ab\)
\(\delta(ab, b) = \epsilon\)
Closed and Consistent Finite Hankel Matrices

The DFA synthesis algorithm requires:
• Sets of prefixes P and suffixes S
• Hankel block over $P' = P \cup P\Sigma$ and S
• Closed: $\text{rows}(P\Sigma) \subseteq \text{rows}(P)$
• Consistent: $\text{row}(p) = \text{row}(p') \Rightarrow \text{row}(p \cdot a) = \text{row}(p' \cdot a)$
Learning from Membership and Equivalence Queries

• Setup:
 – Two players, Teacher and Learner
 – Concept class C of function from X to Y (known to Teacher and Learner)

• Protocol:
 – Teacher secretly chooses concept c from C
 – Learner’s goal is to discover the secret concept c
 – Teacher answers two types of queries asked by Learner
 • Membership queries: what is the value of $c(x)$ for some x picked by the Learner?
 • Equivalence queries: is c equal to hypothesis h from C picked by the Learner?
 – If not, return counter-example x where $h(x)$ and $c(x)$ differ

Angluin's L^* Algorithm

1) Initialize $P = \{ \varepsilon \}$ and $S = \{ \varepsilon \}$
2) Maintain the Hankel block H for $P' = P \cup P\Sigma$ and S using membership queries
3) Repeat:
 - While H is not closed and consistent:
 - If H is not consistent add a distinguishing suffix to S
 - If H is not closed add a new prefix from $P\Sigma$ to P
 - Construct a DFA A from H and ask an equivalence query
 - If yes, terminate
 - Otherwise, add all prefixes of counter-example x to P

Complexity

- $O(n)$ EQs and $O(|\Sigma|^2 \cdot n \cdot L)$ MQs

Weighted Finite Automata (WFA)

Graphical Representation

- State q_1 with transitions $a, 1.2$ and $b, 2$.
- State q_2 with transitions $a, -2$, $b, 0$, $a, 3.2$, $b, 5$, $a, -1$, $b, -2$.

Algebraic Representation

- $A = \langle \alpha, \beta, \{A_a\}_{a \in \Sigma} \rangle$

$$\alpha = \begin{bmatrix} -1 \\ 0.5 \end{bmatrix} \quad A_a = \begin{bmatrix} 1.2 & -1 \\ -2 & 3.2 \end{bmatrix} \quad \beta = \begin{bmatrix} 1.2 \\ 0 \end{bmatrix} \quad A_b = \begin{bmatrix} 2 & -2 \\ 0 & 5 \end{bmatrix}$$

Functional Representation

$$A(x_1 \cdots x_t) = \alpha^\top A_{x_1} \cdots A_{x_t} \beta$$
Hankel Matrices and WFA

Theorem (Fliess ’74)
The rank of a *real* Hankel matrix H equals the minimal number of states of a WFA recognizing the weighted language of H

$$A(p_1 \cdots p_t s_1 \cdots s_{t'}) = \alpha^T A_{p_1} \cdots A_{p_t} A_{s_1} \cdots A_{s_{t'}} \beta$$
From Hankel Matrices to WFA

\[H_a(p, s) = A(pas) \]

\[A(p_1 \cdots p_t a s_1 \cdots s_{t'}) = \alpha^\top A_{p_1} \cdots A_{p_t} A_a A_{s_1} \cdots A_{s_{t'}} \beta \]

\[
\begin{bmatrix}
 \ldots & \vdots & \vdots \\
 \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
 \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot \\
\end{bmatrix}
\begin{bmatrix}
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot \\
\end{bmatrix}
\]
WFA Reconstruction via Singular Value Decomposition

Input: Hankel H' over $P' = P \cup P\Sigma$ and S, number of states n

1) Extract from H' the matrix H over P and S
2) Compute the rank n SVD $H = U D V^T$
3) For each symbol a:
 - Extract from H' the matrix H_a over P and S
 - Compute $A_a = D^{-1}U^T H_a V$

Robustness Property $\|H' - \hat{H}'\| \leq \varepsilon \Rightarrow \|A_a - \hat{A}_a\| \leq O(\varepsilon)$

Probably Approximately Correct (PAC) Learning

• Fix a class D of distributions over X
• Collect m i.i.d. samples $Z = (x_1, ..., x_m)$ from some unknown distribution d from D
• An algorithm that receives Z and outputs a hypothesis h is a PAC-learner for the class D if:
 — Whenever $m > \text{poly}(|d|, 1/\varepsilon, \log 1/\delta)$, with probability at least $1 - \delta$ the hypothesis satisfies $\text{distance}(d,h) < \varepsilon$
• The algorithm is an efficient PAC-learner if it runs in poly-time

Estimating Hankel Matrices from Samples

Sample

\[
\begin{cases}
\text{aa, b, bab, a,} \\
\text{bbab, abb, babba, abbb,} \\
\text{ab, a, aabba, baa,} \\
\text{abbab, baba, bb, a}
\end{cases}
\]

Concentration Bound

\[\|H - \hat{H}\| \leq O\left(\frac{1}{\sqrt{m}}\right)\]

Empirical Hankel Matrix

\[
\begin{bmatrix}
\epsilon & a & b & aa & ab & \ldots \\
0 & 3 & 1 & 1 & 1 & 1 \\
3 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\]
Spectral PAC Learning of Stochastic WFA

• Algorithm:
 1. Estimate empirical Hankel matrix
 2. Use spectral WFA reconstruction

• Efficient PAC-learning:
 – **Running time**: linear in m, polynomial in n and size of Hankel matrix
 – **Accuracy measure**: L_1 distance on all strings of length at most L
 – **Sample complexity**: $L^2 |\Sigma| n^{1/2} / \sigma^2 \varepsilon^2$
 – **Proof**: robustness + concentration + telescopic L_1 bound

Statistical Learning in the Non-realizable Setting

• Fix an unknown distribution \(d \) over \(X \times Y \) (inputs, outputs)
• Collect \(m \) i.i.d. samples \(Z = ((x_1, y_1), \ldots, (x_m, y_m)) \) from \(d \)
• Fix a hypothesis class \(F \) of functions from \(X \) to \(Y \)
• Find a hypothesis \(h \) from \(F \) that has good accuracy on \(Z \)

Empirical Risk Minimization

\[
\min_{h \in F} \frac{1}{m} \sum_{i=1}^{m} \ell(h(x_i), y_i)
\]

• In such a way that it has good accuracy on future \((x, y) \) from \(d \)

\[
\mathbb{E}_{(x, y) \sim d}[\ell(h(x), y)] \leq \frac{1}{m} \sum_{i=1}^{m} \ell(h(x_i), y_i) + \text{complexity}(Z, F)
\]
Learning WFA via Hankel Matrix Completion

\[
\min_h P \left(\begin{array}{c}
1 \\
m \\
\end{array} \right) \leq \left(\begin{array}{c}
`p \\
h \\
p \\
x \\
1 \\
i \\
\end{array} \right) \leq \left(\begin{array}{c}
`p \\
h \\
p \\
x \\
1 \\
i \\
\end{array} \right),
\]

\[
\left(\begin{array}{c}
a \\
b \\
aa \\
ab \\
ba \\
bb \\
\end{array} \right) \leq \left(\begin{array}{c}
? \\
? \\
2 \\
1 \\
? \\
0 \\
\end{array} \right)
\]

Generalization Bounds for Learning WFA

• The generalization power of WFA can be controlled by:
 – Bounding the norm of the weights
 – Bounding the norm of the language (in a Banach space)
 – Bounding the norm of the Hankel matrix

\[
\mathbb{E}_{(x,y) \sim d}[\ell(A(x), y)] \leq \frac{1}{m} \sum_{i=1}^{m} \ell(A(x_i), y_i) + \tilde{O} \left(\frac{\|H_{A}\|^{*}}{m} + \frac{1}{\sqrt{m}} \right)
\]
Some Practical Applications

- **L* algorithm**: learn DFA of network protocol implementations and compare against specification to find bugs

- **Spectral algorithm**: use as initial point of gradient-based methods, increases speed and accuracy

- **Hankel completion**: sample-efficient sequence-to-sequence models outperforming CRFs in small alphabets

Want to Learn More?

• EMNLP’14 tutorial (slides, video, code)
 – Variations on spectral algorithm
 – Extensions to weighted tree automata
 – https://borjaballe.github.io/emnlp14-tutorial/

• Survey papers

• Implementations: Sp2Learn, LibLearn, libalf
Thanks!

Xavier Carreras
Mehryar Mohri
Prakash Panangaden

Joelle Pineau
Doina Precup
Ariadna Quattoni

- Guillaume Rabusseau
- Franco M. Luque
- Pierre-Luc Bacon
- Pascale Gourdeau
- Odalric-Ambrym Maillard
- Will Hamilton
- Lucas Langer
- Shay Cohen
- Amir Globerson
Learning Automata with Hankel Matrices

Borja Balle

[Disclaimer: Work done before joining Amazon]