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What Is This About?

Analytic Automata Theory

More prosaically:

§ The use of tools from mathematical analysis to study questions in automata theory,
specifically questions related to approximation and learning

§ Based on joint work with: X. Carreras, P. Gourdeau, M. Mohri, P. Panangaden,
D. Precup, G. Rabusseau, A. Quattoni

§ Key references: [Bal13, BPP17]



Keep It Real!

R

More precisely:

§ Everything works for complex numbers

§ Some things work for arbitrary fields

§ Virtually nothing works for general semi-rings



Outline

1. Weighted Languages, Weighted Automata, and Hankel Matrices

2. Perturbation Bounds Between Representations

3. Singular Value Automata: Definition

4. Singular Value Automata: Computation

5. Approximate Minimization via SVA Truncation

6. Concluding Remarks



Outline

1. Weighted Languages, Weighted Automata, and Hankel Matrices

2. Perturbation Bounds Between Representations

3. Singular Value Automata: Definition

4. Singular Value Automata: Computation

5. Approximate Minimization via SVA Truncation

6. Concluding Remarks



The Big Picture

Automaton

Language Hankel



Weighted Languages

f : Σ‹ Ñ R , f P RΣ‹

Notation

§ Finite alphabet Σ

§ Free monoid Σ‹

§ Empty string ε

§ String length |x |

§ String concatenation xy “ x ¨ y



Weighted Finite Automata (WFA)

Graphical Representation
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Weighted Finite Automaton

A WFA A with n “ |A| states is a tuple A “ xα,β, tAσuσPΣy where α,β P Rn and Aσ P Rnˆn



Language of a WFA
With every WFA A “ xα,β, tAσuy with n states we associate a weighted language
fA : Σ‹ Ñ R given by

fApx1 ¨ ¨ ¨ xT q “
ÿ

q0,q1,...,qTPrns

αpq0q

˜

T
ź

t“1

Axt pqt´1, qtq

¸

βpqT q

“ αJAx1 ¨ ¨ ¨AxTβ “ αJAxβ

Recognizable/Rational Languages

A weighted language f : Σ‹ Ñ R is recognizable/rational if there exists a WFA A such that
f “ fA. The smallest number of states of such a WFA is rankpf q. A WFA A is minimal if
|A| “ rankpfAq.

Observation: The minimal A is not unique. Take any invertible matrix Q P Rnˆn, then

αJAx1 ¨ ¨ ¨AxTβ “ pα
JQqpQ´1Ax1Qq ¨ ¨ ¨ pQ

´1AxT QqpQ´1βq



Hankel Matrices

Given a weighted language f : Σ‹ Ñ R define its Hankel matrix Hf P RΣ‹ˆΣ‹ as

Hf “

»

—

—

—

—

—

—

—

—

—

—

–

ε a b ¨¨¨ s ¨¨¨

ε f pεq f paq f pbq
...

a f paq f paaq f pabq
...

b f pbq f pbaq f pbbq
...

...
p ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ f pp ¨ sq
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Fliess–Kronecker Theorem [Fli74]

The rank of Hf is finite if and only if f is rational, in which case rankpHf q “ rankpf q



Structure of Low-Rank Hankel Matrices

HfA P R
Σ‹ˆΣ‹ PA P RΣ‹ˆn SA P RnˆΣ‹

»

—

—

—

—

—

—

—

–

s

...

...

...
p ¨ ¨ ¨ ¨ ¨ ¨ ‚ ¨ ¨ ¨ ¨ ¨ ¨

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

p ‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

fl

»

–

s

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

fApp1 ¨ ¨ ¨ pT ¨ s1 ¨ ¨ ¨ sT 1q “ αJAp1 ¨ ¨ ¨ApT
looooooomooooooon

αAppq

As1 ¨ ¨ ¨AsT 1β
loooooomoooooon

βApsq

Note: We call Hf “ PASA the forward-backward factorization induced by A



Structure of Shifted Hankel Matrices

f pp1 ¨ ¨ ¨ pT s1 ¨ ¨ ¨ sT 1q “ αJAp1 ¨ ¨ ¨ApT As1 ¨ ¨ ¨AsT 1β

H “

»

—

—

—

–

s

¨

¨

¨

p ¨ ¨ f ppsq ¨ ¨

¨

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

fl

»

–

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

f pp1 ¨ ¨ ¨ pTσs1 ¨ ¨ ¨ sT 1q “ αJAp1 ¨ ¨ ¨ApT AaAs1 ¨ ¨ ¨AsT 1β

Hσ “

»

—

—

—

–

s

¨

¨

¨

p ¨ ¨ f ppasq ¨ ¨

¨

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

‚ ‚ ‚

¨ ¨ ¨

fi

ffi

ffi

ffi

fl

»

–

‚ ‚ ‚

‚ ‚ ‚

‚ ‚ ‚

fi

fl

»

–

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

¨ ¨ ‚ ¨ ¨

fi

fl

Algebraically: Factorizing H lets us solve for Aa

H “ P S =ñ Hσ “ P Aσ S =ñ Aσ “ P` Hσ S`



Aside: Moore–Penrose Pseudo-inverse

For any M P Rnˆm there exists a unique pseudo-inverse M` P Rmˆn satisfying:

§ MM`M “ M, M`MM` “ M`, and M`M and MM` are symmetric

§ If rankpMq “ n then MM` “ I, and if rankpMq “ m then M`M “ I

§ If M is square and invertible then M` “ M´1

Given a system of linear equations Mu “ v, the following is satisfied:

M`v “ argmin
uPargmin }Mu´v}2

}u}2 .

In particular:

§ If the system is completely determined, M`v solves the system

§ If the system is underdetermined, M`v is the solution with smallest norm

§ If the system is overdetermined, M`v is the minimum norm solution to the least-squares
problem min }Mu´ v}2



From Finite Hankel Matrix to WFA
Suppose f : Σ‹ Ñ R has rank n and ε P P, S Ă Σ‹ are such that the sub-block H P RPˆS of
Hf satisfies rankpHq “ n.
Let A “ xα,β, tAσuy be obtained as follows:

1. Compute a rank factorization H “ PS; i.e. rankpPq “ rankpSq “ rankpHq

2. Let αJ (resp. β) be the ε-row of P (resp. ε-column of S)

3. Let Aσ “ P`HσS`, where Hσ P RP¨σˆS is a sub-block of Hf

Claim The resulting WFA computes f and is minimal

Proof

§ Suppose Ã “ xα̃, β̃, tÃσuy is a minimal WFA for f .

§ It suffices to show there exists an invertible Q P Rnˆn such that αJ “ α̃JQ,
Aσ “ Q´1ÃσQ and β “ Q´1β̃.

§ By minimality Ã induces a rank factorization H “ P̃S̃ and also Hσ “ P̃ÃσS̃.

§ Since Aσ “ P`HσS` “ P`P̃ÃσS̃S`, take Q “ S̃S`.

§ Check Q´1 “ P`P̃ since P`P̃S̃S` “ P`HS` “ P`PSS` “ I.
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The Big Picture

Automaton

Language Hankel



Norms on WFA

Weighted Finite Automaton

A WFA with n states is a tuple A “ xα,β, tAσuσPΣy where α,β P Rn and Aσ P Rnˆn

Let p, q P r1,8s be Hölder conjugate 1
p `

1
q “ 1.

The pp, qq-norm of a WFA A is given by

}A}p,q “ max

"

}α}p, }β}q, max
σPΣ

}Aσ}q

*

,

where }Aσ}q “ sup}v}qď1 }Aσv}q is the q-induced norm.

Example For probabilistic automata A “ xα,β, tAσuy with α probability distribution, β
acceptance probabilities, Aσ row (sub-)stochastic matrices we have }A}1,8 “ 1



Perturbation Bounds: AutomatonÑLanguage [Bal13]

Suppose A “ xα,β, tAσuy and A 1 “ xα 1,β 1, tA 1σuy are WFA with n states satisfying
}A}p,q ď ρ, }A 1}p,q ď ρ, max

 

}α´ α 1}p, }β´ β 1}q, maxσPΣ }Aσ ´ A 1σ}q
(

ď ∆.

Claim The following holds for any x P Σ‹:

|fApxq ´ fA 1pxq| ď p|x | ` 2qρ|x |`1∆ .

Proof By induction on |x | we first prove }Ax ´ A 1x}q ď |x |ρ
|x |´1∆:

}Axσ ´ A1xσ}q ď }Ax ´ A1x}q}Aσ}q ` }A
1
x}q}Aσ ´ A1σ}q ď |x |ρ

|x |∆` ρ|x |∆ “ p|x | ` 1qρ|x |∆ .

|fApxq ´ fA 1pxq| “ |α
JAxβ´ α 1

J
A 1xβ

1
| ď |αJpAxβ´ A1xβ

1
q| ` |pα´ α1qJA1xβ

1
|

ď }α}p}Axβ´ A1xβ
1
}q ` }α´ α1}p}A

1
xβ
1
}q

ď }α}p}Ax}q}β´ β1}q ` }α}p}Ax ´ A1x}q}β
1
}q ` }α´ α1}p}A

1
x}q}β

1
}q

ď ρ|x |`1}β´ β1}q ` ρ
2}Ax ´ A1x}q ` ρ

|x |`1}α´ α1}p

ď ρ|x |`1∆` ρ2ρ|x |´1|x |∆` ρ|x |`1∆ .



Norms on Languages

§ Lp norms (p P r1,8s), γ-discounted Lp norms (γ P p0, 1q)

}f }p “

˜

ÿ

x

|f pxq|p

¸1{p

}f }p,γ “

˜

ÿ

x

γp|x ||f pxq|p

¸1{p

§ Dirichlet norm

}f }D “

˜

ÿ

x

p|x | ` 1q|f pxq|2

¸1{2

§ Bisimulation norms [FZ14, BGP17]

}f }8,γ “ sup
xPΣ‹

γ|x ||f pxq| }f }B “ sup
xPΣ8

ÿ

kě0

γk |f pxďkq|



Aside: Banach and Hilbert Spaces

§ A (possibly infinite-dimensional) vector space X equipped with a norm } ‚ } : XÑ r0,8q
is a Banach space if the pair pX, } ‚ }q is complete, i.e. Cauchy sequences converge.

§ Examples: `p “ tf : Σ‹ Ñ R : }f }p ă 8u
§ Exercise: the set of rational f P `p is dense in `p for any p P r1,8s

§ A (real) Hilbert space is a Banach space pX, } ‚ }q equipped with an inner product

x‚, ‚y : Xˆ XÑ R such that }v} “
a

xv , vy
§ Example: `2 with }f }22 “ xf , f y “

ř

xPΣ‹ f pxq
2

§ Example `D “ tf : }f }D ă 8u with }f }2D “ xf , f yD “
ř

xPΣ‹p|x | ` 1qf pxq2

§ A Hilbert space is separable if it admits a countable orthonormal basis.
§ Examples: `2 and `D are separable



Perturbation Bounds: LanguageÑHankel
Consider the Hilbert space `D “ tf : Σ‹ Ñ R : }f }D ă 8u with the Dirichlet inner product

xf , gyD “
ÿ

xPΣ‹

p|x | ` 1qf pxqgpxq .

Consider the Frobenius norm on matrices T P RΣ‹ˆΣ‹ given by

}T}F “

d

ÿ

x ,yPΣ‹

Tpx , yq2 .

Claim If f , f 1 P `D are two weighted languages such that }f ´ f 1}D ď ∆, then their
corresponding Hankel matrices satisfy }Hf ´Hf 1}F ď ∆.
Proof

}Hf ´Hf 1}
2
F “

ÿ

x ,yPΣ‹

pHf px , yq ´Hf 1px , yqq2 “
ÿ

x ,yPΣ‹

pf px ¨ yq ´ f 1px ¨ yqq2

“
ÿ

zPΣ‹

p|z | ` 1qpf pzq ´ f 1pzqq2 “ }f ´ f 1}2D



Aside: Singular Value Decomposition (SVD)
For any M P Rnˆm with rankpMq “ k there exists a singular value decomposition

M “ UDVJ “
k
ÿ

i“1

siuiv
J
i

§ D P Rkˆk diagonal contains k sorted singular values s1 ě s2 ě ¨ ¨ ¨ ě sk ą 0
§ U P Rnˆk contains k left singular vectors, i.e. orthonormal columns UJU “ I
§ V P Rmˆk contains k right singular vectors, i.e. orthonormal columns VJV “ I

Properties of SVD
§ M “ pUD1{2qpD1{2VJq is a rank factorization
§ Can be used to compute the pseudo-inverse as M` “ VD´1UJ

§ Provides optimal low-rank approximations. For k 1 ă k , Mk 1 “ Uk 1Dk 1V
J
k 1 “

řk 1

i“1 siuiv
J
i

satisfies

Mk 1 P argmin
rankpM̂qďk 1

}M´ M̂}2



Perturbation Bounds: HankelÑAutomaton [Bal13]

§ Suppose f : Σ‹ Ñ R has rank n and ε P P, S Ă Σ‹ are such that the sub-block H P RPˆS

of Hf satisfies rankpHq “ n
§ Let A “ xα,β, tAσuy be obtained as follows:

1. Compute the SVD factorization H “ PS; i.e. P “ UD1{2 and S “ D1{2VJ

2. Let αJ (resp. β) be the ε-row of P (resp. ε-column of S)
3. Let Aσ “ P`HσS`, where Hσ P RP¨σˆS is a sub-block of Hf

§ Suppose Ĥ P RPˆS and Ĥσ P RP¨σˆS satisfy maxt}H´ Ĥ}2, maxσ }Hσ ´ Ĥσ}2u ď ∆

§ Let Â “ xα̂, β̂, tÂσuy be obtained as follows:

1. Compute the SVD rank-n approximation Ĥ « P̂Ŝ; i.e. P̂ “ ÛnD̂
1{2
n and Ŝ “ D̂

1{2
n V̂Jn

2. Let α̂J (resp. β̂) be the ε-row of P̂ (resp. ε-column of Ŝ)
3. Let Âσ “ P̂`ĤσŜ`

Claim For any pair of Hölder conjugate pp, qq we have

maxt}α´ α̂}p, }β´ β̂}q, max
σ
}Aσ ´ Âσ}qu ď Op∆q



Applications and Limitations of Perturbation Bounds

Applications

§ Analysis of machine learning algorithms for WFA [BM12, BCLQ14, BM17]

§ Statistical properties of classes of WFA (e.g. Rademacher complexity) [BM15, BM18]

§ Continuity of operations on WFA and rational languages [BGP17]

Limitations

§ AutomatonÑLanguage: grow with |x |, depend on representation chosen for A

§ LanguageÑHankel: only applies to restricted choice of norms (?)

§ HankelÑAutomaton: depends on algorithm, cumbersome to prove
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Motivation: Approximate Minimization

§ Suppose f is a weighted language with rankpf q “ n and }f } ă 8

§ Problem Given n̂ ă n find f̂ with rankpf̂ q “ n̂ such that

}f ´ f̂ } « min
rankpf 1qďn̂

}f ´ f 1}

§ Typically, f is given by a minimal WFA A and the output is a WFA Â with |Â| “ n̂

§ The techniques described so far are too brittle to solve this problem!



Aside: Operators on Hilbert Spaces

§ Let X1, X2 be a separable Hilbert spaces. Any linear operator T : X1 Ñ X2 can be
represented as an infinite matrix

§ A linear operator T : X1 Ñ X2 is bounded if }T}op “ sup}v}X1
ď1 }Tv}X2 ă 8

§ The adjoint T˚ : X2 Ñ X1 of a bounded linear operator T is given by
xTu, vyX2 “ xu, T˚vyX1

§ A bounded linear operator T is compact if it is the limit of a sequence of finite-rank
operators (w.r.t. the topology induced by } ‚ }op).

§ Example: all finite-rank operators are compact

§ Compact linear operators T admit SVD (a.k.a. Hilbert–Schmidt decomposition)

T “ UDV˚ “
k
ÿ

i“1

siuixvi , ‚yX1 .

Here k “ rankpTq ď 8, and if k “ 8 then limiÑ8 si “ 0.

§ Finite-rank bounded operators T admit a pseudo-inverse T`



Hankel Operators
A Hankel matrix Hf P RΣ‹ˆΣ‹ can be interpreted as a linear operator Hf : RΣ‹ Ñ RΣ‹ :

pHf gqpxq “
ÿ

yPΣ‹

f px ¨ yqgpyq .

§ Fliess–Kronecker: Finite rank if and only if f rational

§ When does it admit an SVD? When it is a compact operator on a Hilbert space!

Shift Characterization

§ Define the forward/backward left/right shift operators Lσ, L˚σ, Rσ, R˚σ : RΣ‹ Ñ RΣ‹ as:
pL˚σf qpxq “ f pσxq, pR˚σf qpxq “ f pxσq

pLσf qpxq “

#

f pσ´1xq x1 “ σ

0 otherwise
pRσf qpxq “

#

f pxσ´1q x|x | “ σ

0 otherwise

§ Exercise A linear operator T : RΣ‹ Ñ RΣ‹ is Hankel if and only if R˚σT “ TLσ, @σ P Σ



Aside: Operator-Theoretic Proof of Fliess’ Theorem
Claim Suppose Hf : `2 Ñ `2 is bounded and has finite rank n. Then there exists a WFA
A “ xα,β, tAσuy with n states such that fA “ f

Proof
Take a rank factorization Hf “ PS and note P and S are bounded and finite rank.
Build the automaton A by taking:

§ αJ the ε-row of P; i.e. αJ “ Ppε,´q

§ β the ε-column of S; i.e. β “ Sp´, εq

§ Aσ “ SLσS`

It suffices to show that for any x P Σ‹ we have αJAx “ Ppx ,´q. By induction on length of x :

αJAxAσ “ Ppx ,´qSLσS` “ ΠxPSLσS` “ ΠxHf LσS` “ ΠxR˚σHf S`

“ ΠxR˚σPSS` “ ΠxR˚σP “ ΠxσP “ Ppxσ,´q



Which Hankel Operators Admit an SVD?

A Hankel matrix Hf P RΣ‹ˆΣ‹ can be interpreted as a linear operator Hf : RΣ‹ Ñ RΣ‹ :

pHf gqpxq “
ÿ

yPΣ‹

f px ¨ yqgpyq .

§ Fliess–Kronecker: Finite rank if and only if f rational

§ When does it admit an SVD? When it is a compact operator on a Hilbert space!

§ Finite rank operators are compact if and only if they are bounded:
}Hf }op “ sup}g}2ď1 }Hf g}2 ă 8

§ When is a finite rank Hankel operator bounded?



Boundedness of `2 and Dirichlet Norms
Claim Suppose f : Σ‹ Ñ R is rational. Then }f }2 ă 8 if and only if }f }D ă 8
Proof One direction is easy:

}f }22 “
ÿ

xPΣ‹

f pxq2 ď
ÿ

xPΣ‹

p|x | ` 1qf pxq2 “ }f }2D .

The other direction is more technical. Let A “ xα,β, tAσuy be a minimal WFA for f 2 with n
states. Then one can show that the spectral radius of A “

ř

σ Aσ satisfies ρ “ ρpAq ă 1
(see [BPP17]).

ÿ

xPΣt

f pxq2 “
ÿ

xPΣt

αJAxβ “ αJpAσ1 ` ¨ ¨ ¨ ` Aσk
q ¨ ¨ ¨ pAσ1 ` ¨ ¨ ¨ ` Aσk

qβ

“ αJAtβ ď Optnρtq .

Therefore, since ρ ă 1 we have

}f }2D “
ÿ

xPΣ‹

p|x | ` 1qf pxq2 “
ÿ

tě0

ÿ

xPΣt

pt ` 1qαJAtβ ď
ÿ

tě0

Optn`1ρtq ă 8 .



Bounded Hankel Operators of Finite Rank
Let Hf : `2 Ñ `2 be a finite rank Hankel operator.
Theorem The operator Hf is bounded if and only if f P `2.
Proof Since f is the first row of Hf , from Hf bounded to }f }2 ă 8 is easy:

8 ą }Hf }op “ sup
}g}2ď1

}Hf g}2 ě }Hf eε}2 “ }f }2 .

The other direction uses the boundedness of the Dirichlet norm: let }g}2 ď 1, then

}Hf g}
2
2 “

ÿ

xPΣ‹

˜

ÿ

yPΣ‹

f px ¨ yqgpyq

¸2

“
ÿ

xPΣ‹

xL˚x f , gy2

ď }g}22
ÿ

xPΣ‹

}L˚x f }
2
2 ď

ÿ

xPΣ‹

}L˚x f }
2
2

“
ÿ

xPΣ‹

ÿ

yPΣ‹

f px ¨ yq2 “
ÿ

zPΣ‹

p|z | ` 1qf pzq2 “ }f }2D ă 8 .



Are We Done Yet?
Approximate Minimization Strategy

1. Take rational f with rankpf q “ n and }f }2 ă 8

2. Since Hf : `2 Ñ `2 is compact, it admits an SVD

Hf “

n
ÿ

i“1

siuixvi , ‚y .

3. Given n̂ ă n take the corresponding low-rank approximation Ĥ

Ĥ “

n̂
ÿ

i“1

siuixvi , ‚y .

4. Compute a WFA Â from Ĥ Ð NOT NECESSARILY HANKEL!

5. Bound the error between f and f̂ “ fÂ as

}f ´ f̂ }2 ď }Hf ´ Ĥ}op “ sn̂`1 .



Duality Between Rank Factorization and Minimal WFA
Well-known fact: If M has rank n and M “ PS “ P 1S 1 are two rank factorizations, then there
exists invertible Q P Rnˆn such that

P 1 “ PQ S 1 “ Q´1S

Well-known fact: If A “ xα,β, tAσuy and A 1 “ xα 1,β 1, tA 1σuy are minimal WFA for f of rank
n, then there exists invertible Q P Rnˆn such that

α 1
J
“ αJQ β 1 “ Q´1β A 1σ “ Q´1AσQ

Less-known fact: From the proof of the Fliess–Kronecker theorem applied to f of rank n one
obtains a bijection

tpP, Sq : Hf “ PS, rankpPq “ rankpSq “ nu Ø tA “ xα,β, tAσuy : fA “ f , |A| “ nu



Singular Value Automata

§ Let A be a minimal WFA with n states computing f

§ Definition A is a singular value automaton (SVA) if the forward-backward factorization
Hf “ PASA comes from a singular value decomposition, i.e. PA “ UD1{2, SA “ D1{2VJ,
with UJU “ VJV “ I and D “ diagps1, . . . , snq with s1 ě ¨ ¨ ¨ ě sn ą 0

§ Theorem Every rational f with }f }2 ă 8 admits an SVA
§ The SVA of f is “as unique” as the SVD of Hf

§ Example: if all inequalities between singular values are strict, SVD is unique up to sign
changes in pairs of associated left/right singular vectors ñ SVA unique up to sign changes in
pairs of associated initial/final weights

§ Given a minimal WFA A “ xα,β, tAσuy for f with }f }2 ă 8 there exists an invertible
Q P Rnˆn such that AQ “ xQJα, Q´1β, tQ´1AσQuy is an SVA for f

§ Definition could be changed to have PA “ U and SA “ DVJ, or PA “ UD and
SA “ VJ. But the current one makes computation of Q above more “symmetric”



Why Are SVA Special?

§ It orthogonalizes the states of a WFA!

§ Suppose A “ xα,β, tAσuy is an SVA with n states for f inducing the SVD

Hf “

n
ÿ

i“1

siuixvi , ‚y .

§ For i P rns let Ai “ xα, ei , tAσuy where ei “ p0, . . . , 1, . . . , 0q is the ith coordinate vector

§ The language fi of Ai is given by fi pxq “ αJAxei “ αApxq
Jris; i.e. is the “memory” of

state i after reading x

§ The language fi is also the ith column of the forward matrix PA “ UD1{2; i.e. fi “
?
siui

§ Since the columns of U are orthonormal, the languages fi and fj with i ‰ j are orthogonal
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The Gramians of a WFA

§ Let A be a minimal WFA for f with n “ rankpf q inducing the rank factorization Hf “ PS
(i.e. P “ PA and S “ SA)

§ The reachability Gramian of A is the (possibly infinite) n ˆ n matrix Gp “ PJP

Gp “ PJP “
ÿ

xPΣ‹

Ppx ,´qJPpx ,´q “
ÿ

xPΣ‹

`

αJAx

˘J `

αJAx

˘

§ The observability Gramian of A is the (possibly infinite) nˆ n matrix Gs “ SSJ given by

Gs “ SSJ “
ÿ

xPΣ‹

Sp´, xqSp´, xqJ “
ÿ

xPΣ‹

pAxβq pAxβq
J



Existence of the Gramians
Let A be a minimal WFA for f with n “ rankpf q inducing the rank factorization Hf “ PS (i.e.
P “ PA and S “ SA)

Claim The Gramians of A are finite if and only if }f }2 ă 8

Proof (one direction only)

Suppose }f }2 ă 8 and let A 1 “ AQ “ xQJα, Q´1β, tQ´1AσQuy be an SVA for f
Observe the Gramians G 1p and G 1s of A 1 exist since

G 1p “ PJA 1PA 1 “ D1{2UJUD1{2 “ D

G 1s “ SA 1S
J
A 1 “ D1{2VJVD1{2 “ D

On the other hand, since PA 1 “ PAQ and SA 1 “ Q´1SA we have

G 1p “ QJGpQ G 1s “ Q´JGsQ
´1

Therefore Gp and Gs must be finite



From Gramians to SVA

§ Let A be a minimal WFA for f with }f }2 ă 8

§ Suppose we have the Gramians of A: Gp and Gs

§ Recall from the previous proof that
§ If A 1 is SVA then G 1p “ G 1s “ D “ diagps1, . . . , snq
§ If A 1 “ AQ then G 1p “ QJGpQ and G 1s “ Q´JGsQ´1

§ Claim The following algorithm returns Q such that AQ is an SVA

1. Compute the Cholesky decompositions Gp “ LpLJp and Gs “ LsLJs
2. Compute the SVD decomposition LJp Ls “ UDVJ

3. Let Q “ L´Jp UD1{2

§ In particular, the D in this algorithm is the matrix of singular values of Hf

§ See proof in [BPP17]



Computing Norms Using Gramians

Suppose A is a minimal WFA for f with }f }2 ă 8.
Let Gp and Gs be the Gramians of A.
Then the following hold:

§ }f }22 “ αJGsα “ βJGpβ

§ }f }2D “ }Hf }
2
F “ TrpGpGsq

§ }Hf }
2
op “ ρpGpGsq “ maxt|λ| : detpGpGs ´ λIq “ 0u



Computing the Gramians Using Fixed-Points
Let A be a minimal WFA for f with }f }2 ă 8.

Claim X “ Gp and Y “ Gs are solutions of the fixed-point equations

X “ FppXq “ ααJ `
ÿ

σ

AJσXAσ Y “ FspYq “ ββJ `
ÿ

σ

AσYAJσ

Proof Recall Gp “ PJAPA “
ř

xPΣ‹ PApx ,´qPApx ,´qJ and PApx ,´q “ αJAx . Therefore:

Gp “
ÿ

xPΣ‹

pAJx αqpα
JAxq “ ααJ `

ÿ

xPΣ`

pAJx αqpα
JAxq

“ ααJ `
ÿ

σPΣ

ÿ

xPΣ‹

AJσpA
J
x αqpα

JAxqAσ

“ ααJ `
ÿ

σPΣ

AJσ

˜

ÿ

xPΣ‹

pAJx αqpα
JAxq

¸

Aσ “ ααJ `
ÿ

σPΣ

AJσGpAσ



Solving the Fixed-Point Equations

§ Recall the reachability Gramian Gp is a solution of

X “ FppXq “ ααJ `
ÿ

σ

AJσXAσ

§ Let ρ be the spectral radius of
ř

σ AσbAσ, where b denotes the Kronecker product (i.e.

Aσ b Aσ P Rn2ˆn2)
§ We distinguish two cases. If ρ ă 1:

§ X “ FppXq has a unique solution
§ Can be found by solving the linear system with n2 unknowns obtained through vectorization:

vecpααJq “ αb α and vecpAJσXAσq “ pAσ b Aσq
J vecpXq

§ If ρ ě 1:
§ X “ FppXq might have multiple solutions (there is at least one because Gp is defined)
§ In this case rephrase the problem: Gp is the least positive semi-definite solution of the linear

matrix inequality X ľ FppXq
§ The solution can be found by semi-definite programming



Computing SVA: Summary

Suppose A is a WFA computing a function f . To compute an SVA for f do:

1. Test if }f }2 ă 8

2. Minimize A if necessary

3. Compute Gramians Gp and Gs (using linear solver or semi-definite solver)

4. Find change of basis Q through Cholesky and SVD of finite matrices

5. Return AQ

Final remarks

§ Runs in time polynomial in |A| and |Σ|

§ Easy to implement in Python or MATLAB



Outline

1. Weighted Languages, Weighted Automata, and Hankel Matrices

2. Perturbation Bounds Between Representations

3. Singular Value Automata: Definition

4. Singular Value Automata: Computation

5. Approximate Minimization via SVA Truncation

6. Concluding Remarks



Approximate Minimization with SVA
§ Suppose f is a weighted language with rankpf q “ n and }f }2 ă 8. Let si be the singular

values of Hf

§ Problem Given n̂ ă n find f̂ with rankpf̂ q “ n̂ such that

}f ´ f̂ }2 « min
rankpf 1qďn̂

}f ´ f 1}2

§ SVA Solution Compute SVA A for f and obtain Â by removing the last n ´ n̂ states

}f ´ f̂ }22 ď
n
ÿ

i“n̂`1

s2i

§ Lower Bound Considering approximation in terms of } ‚ }D instead of } ‚ }2:

min
rankpf 1qďn̂

}f ´ f 1}2D ě
n
ÿ

i“n̂`1

s2i



Intuition for Removing the Last States from an SVA

§ Suppose A “ xα,β, tAσuy is an SVA. Since the Gramians satisfy
Gp “ Gs “ D “ diagps1, . . . , snq, we have

D “ ααJ `
ÿ

σ

AJσDAσ

D “ ββJ `
ÿ

σ

AσDAJσ

§ By looking at the diagonal entries in these equations we can deduce

|Aσpi , jq| ď

d

mintsi , sju

maxtsi , sju

§ For example, connections between the first and last state are weak:
|Aσp1, nq|, |Aσpn, 1q| ď

a

sn{s1

§ See [BPP15] for a “pedestrian” bound for }f ´ f̂ }2 based on this idea



Analysis of SVA Approximate Minimization
SVA

α “

„

αp1q

αp2q



,

β “

«

βp1q

βp2q

ff

,

Aσ “

«

A
p11q
σ A

p12q
σ

A
p21q
σ A

p22q
σ

ff

Truncated SVA

α̂ “

„

αp1q

0



“ Πα ,

β̂ “

«

βp1q

βp2q

ff

“ β ,

Âσ “

«

A
p11q
σ 0

A
p21q
σ 0

ff

“ AσΠ

Π “

„

In̂ 0
0 0



Analysis
§ Let A be SVA for f and Â truncated SVA computing f̂
§ Show }f̂ }2 ď }f }2 (see [BPP17])
§ Show }f ´ f̂ }2 ď s2n̂`1 ` ¨ ¨ ¨ ` s2n (organic free-range proof on the board)
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The Tree Case

§ Take a ranked alphabet Σ “ Σ0 Y Σ1 Y ¨ ¨ ¨

§ A weighted tree automaton with n states is a tuple A “ xα, tTτuτPΣě1 , tβσuσPΣ0y where

α,βσ P Rn Tτ P pRnq
b rkpτq`1

§ A defines a function fA “ TreesΣ Ñ R through recursive vector-tensor contractions

§ There exists an analogue of the Hankel matrix for f : TreesΣ Ñ R where rows are indexed
by contexts and columns by trees

§ The same ideas lead to a notion of singular value tree automata [RBC16]

§ In this case the computation of the Gramians is already a highly non-trivial problem



The One Symbol Case

§ When |Σ| “ 1, Σ‹ “ N and one recovers the classical Hankel operators studied in complex
analysis and the impulse responses studied in control theory and signal processing

§ A new perspective in terms of functions of one complex variable arises from the
power-series point of view: for z P C with small enough modulus

f pzq “
ÿ

kě0

akz
k “

ÿ

kě0

αpzAqkβ “ αJpI´ zAq´1β “
ppzq

qpzq

§ N can be embedded into a locally compact Abelian group Z, `2 gets a new definition in
terms of Fourier analysis, Hankel operators get a new definition in terms of Hardy spaces,
etc.

§ Example: Nehari’s theorem says that }Hf }op “ sup|z|ă1 |f pzq|

§ Suggested readings: Peller’s “Hankel Operators and Their Applications” [Pel12] and
Fuhrmann’s “A Polynomial Approach to Linear Algebra” [Fuh11]



Open Problems

§ Complexity of testing }f }p ă R, computing and approximating `p and other norms on
languages

§ Complexity of optimal approximate minimization in terms of } ‚ }2
§ Quality of approximation of SVA truncation in terms of } ‚ }2 or analysis of approximation

in terms of } ‚ }D
§ Approximate minimization with other norms



Conclusions

§ Analytic automata theory is a vastly understudied area, rich in interesting open problems
(for the mathematically adventurous)

§ Singular value automata provide a powerful canonical form for WFA over the reals

§ Approximate minimization is a generalization of automata minimization with connections
to machine learning



Thanks!
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