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What Is This About?

Analytic Automata Theory

More prosaically:
» The use of tools from mathematical analysis to study questions in automata theory,
specifically questions related to approximation and learning

» Based on joint work with: X. Carreras, P. Gourdeau, M. Mohri, P. Panangaden,
D. Precup, G. Rabusseau, A. Quattoni

» Key references: [Ball3, BPP17]



Keep It Real!

More precisely:
» Everything works for complex numbers
» Some things work for arbitrary fields

» Virtually nothing works for general semi-rings
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Outline

1. Weighted Languages, Weighted Automata, and Hankel Matrices



The Big Picture

Automaton

Language » Hankel



Weighted Languages

f:2* >R, feR¥

Notation
» Finite alphabet *
» Free monoid =~
» Empty string €
» String length |x|
» String concatenation xy = x -y



Weighted Finite Automata (WFA)

Graphical Representation

a,l2 a,3.2
b,?2 b5

research
N1

Algebraic Representation

“los]| #-[¥]

Weighted Finite Automaton

A WFA A with n = |A| states is a tuple A = (&, B, {Ac}sex) where &, 3 € R"” and A; € R™"



Language of a WFA

With every WFA A = («, 3, {As}) with n states we associate a weighted language
fa:2* — R given by

.
faa--xr) = Y. a«lqo) (H A (ge-1, qt)) B(qr)
t=1

q0.91,...97€[n]

=a'A, A B=a AP

Recognizable/Rational Languages

A weighted language f : Z* — R is recognizable/rational if there exists a WFA A such that
f = fa. The smallest number of states of such a WFA is rank(f). A WFA A is minimal if
|A| = rank(fa).

Observation: The minimal A is not unique. Take any invertible matrix Q € R"*", then

alAy - AgB=(a'Q(QALQ)- - (QA,Q)(QIB)



i h
Hankel Matrices researct

Given a weighted language f : Z* — R define its Hankel matrix Hy € R*"*%" as

€ a b s
e | f(e) f(a) f(b)
a | f(a) f(aa) f(ab)
Hy— b f(b) f(ba) f(bb)
P f(p-s)

Fliess—Kronecker Theorem

The rank of Hy is finite if and only if f is rational, in which case rank(H¢) = rank(f)




Structure of Low-Rank Hankel Matrices

HfA c RZ XX PA c RZ*XH SA c RHXZ

S

falpr---pr-s1---s11) = ?‘TApl"'APT A, ---As, B

Note: We call Hf = P 5S4 the forward-backward factorization induced by A



Structure of Shifted Hankel Matrices research

f(pr-- prsy---s7/) = O‘TApl AL A A LB

s

g | _:::[:::::]
p--f(ps)-- e o o || - - e - -

f(pr- prosy---st) = O‘TAM AL AGA AL B

s

|

Algebraically: Factorizing lets us solve for

H=PS =— H,=PA;S =— A;=P" H,S"




Aside: Moore—Penrose Pseudo-inverse

For any M € R"*™ there exists a unique pseudo-inverse M+ € R™*" satisfying:
» MMTM =M, MTMM™ = M*, and M™M and MM™ are symmetric
» If rank(M) = n then MM™ = |, and if rank(M) = m then M™M = |
» If M is square and invertible then M+ = M1

Given a system of linear equations Mu = v, the following is satisfied:

Mty = argmin lull2
ucargmin [Mu—v|»
In particular:
» If the system is completely determined, M v solves the system
» If the system is underdetermined, M"v is the solution with smallest norm

» If the system is overdetermined, M"v is the minimum norm solution to the least-squares
problem min [[Mu — v||»



From Finite Hankel Matrix to WFA

Suppose f : £* — R has rank n and € € P, 8 < Z* are such that the sub-block H € R¥*$ of
Hy satisfies rank(H) = n.
Let A= {(«, B, {As}) be obtained as follows:

1. Compute a rank factorization H = PS; i.e. rank(P) = rank(S) = rank(H)

2. Let o' (resp. B) be the e-row of P (resp. e-column of S)

3. Let Ay = P*HyS*, where Hy € R”'9%S s a sub-block of Hy

Claim The resulting WFA computes f and is minimal

Proof
» Suppose A = (&, 3, {Ay}) is a minimal WFA for f.
» It suffices to show there exists an invertible Q € R"*" such that o' = &' Q,
A; =Q'A;Qand B =Q'B.
» By minimality A induces a rank factorization H = PS and also H, = ﬁﬂgg.
» Since A, = PtH.S*™ = P*PA,SS*, take Q = SS+.
» Check Q! = PP since P*PSS* = PTHS* = P*PSS* = I.
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2. Perturbation Bounds Between Representations



The Big Picture

Automaton

Language » Hankel



Norms on WFA

Weighted Finite Automaton
A WFA with n states is a tuple A = (&, B, {As}sex) Where &, 3 € R"” and A; € R™"

Let p, g € [1, 0] be Holder conjugate % + % =1

The (p, g)-norm of a WFA A is given by

|Alpq = max{na ol

Bq, max |A0\q} ,
oEr

where [Ag|q = sup),| <1 [Acv|q is the g-induced norm.

Example For probabilistic automata A = («, 3, {As}) with o probability distribution, 3
acceptance probabilities, A; row (sub-)stochastic matrices we have ||All; » =1



Perturbation Bounds: Automaton—Language [Bai13]

Suppose A = («, B, {As}) and A" = (o, B', {AL}) are WFA with n states satisfying
[Alpg <p < p, max{[loc — o&'lp, |B — B'lq maxoex |Ac — Agllq} <

Claim The following holds for any x € X*:
[fa(x) = far(x)| < (Ix] +2)p" 1A
Proof By induction on |x| we first prove |A, — A’|, < |x|p*I71A:

[Axo = Alglg < A = AllglAclq + [ALlglA — AGlg < [x]p™A + A = (x| + 1)pkA .

P

[fa(x) = far ()| = o A — o' TALB| < o (AR — ALB)| + (o — o) TALB|

[l AcB — ALBlg + lloc— o'l | Bl g

[edlp|AxlqlB = Bllg + | oo Ax = ALllglBllq + [ — o'l | AL B4
PR — Blg + 0% Ax — AL + oI o — o

p|X|HA+p p\x\ 1|x]A+p|X|+1A _

NN N

IN



Norms on Languages

» L, norms (p € [1,00]), y-discounted L, norms (y € (0, 1))

1/p
|fllp = (ZWX)I”) |£llpy = (Zv”'xllf(X)l”)

1/p

» Dirichlet norm

1/2
Ifllo = (Z(IXI + 1)f(X)|2>

X

» Bisimulation norms [FZ14, BGP17]

[fllcoy = sup YHIFCOL s = sup D Y¥|F(x<k)]
xexr*

XELP kZO



Aside: Banach and Hilbert Spaces

» A (possibly infinite-dimensional) vector space X equipped with a norm | e | : X — [0, )
is a Banach space if the pair (X, | e ||) is complete, i.e. Cauchy sequences converge.
» Examples: £, = {f: Z* - R: |f], < o0}
» Exercise: the set of rational f € £, is dense in {, for any p € [1, 0]

» A (real) Hilbert space is a Banach space (X, || e ||) equipped with an inner product
(o,0): X x X — R such that ||v| = \/{v, v)
» Example: & with |[f[3 = {(f, f) = 5. f(x)?
» Example {p = {f : |f|p < oo} with |[f|% ={F, f)p =D - (Ix| + 1)F(x)?

» A Hilbert space is separable if it admits a countable orthonormal basis.
» Examples: {, and {p are separable



Perturbation Bounds: Language—Hankel
Consider the Hilbert space {p = {f : £* — R : ||f|p < oo} with the Dirichlet inner product

(f.eyp = ), (Ix| + Df(x)g(x) .

xeXr*

Consider the Frobenius norm on matrices T € R*"**" given by

ITle= | >, Tay)?.

X, yexr*

Claim If f, f" € {p are two weighted languages such that |f — f’|p < A, then their
corresponding Hankel matrices satisfy |[Hr — Hs/||[p < A.
Proof

[He =HelE = > (He(x,y) —Hel(xy)? = D (Fx-y) = f'(x-y))?
X, yeX* X, yeX*

= > (2l + D)(f(2) = f'(2)* = |f = '}

zeEX*



Aside: Singular Value Decomposition (SVD)

For any M € R"*™ with rank(M) = k there exists a singular value decomposition

k
M =UDV' = ) suv/
i=1

» D e Rkxk diagonal contains k sorted singular values s1 = 50 > -+ > s, > 0
» U e R"™K contains k left singular vectors, i.e. orthonormal columns u'u=1I
» V e R™*k contains k right singular vectors, i.e. orthonormal columns V'V = |

Properties of SVD
» M = (UDY?)(DY2V") is a rank factorization
» Can be used to compute the pseudo-inverse as M+ = VDU T
» Provides optimal low-rank approximations. For k' < k, M, = Uk/Dk/VZ, = Zfil 5,-u,-v,-T
satisfies
My € argmin |[M — M|,
rank(M)<k’



Perturbation Bounds: Hankel—Automaton [Bai13]

» Suppose f : £* — R has rank n and € € P, 8 © Z* are such that the sub-block H € R¥*%
of Hy satisfies rank(H) = n
» Let A= {(«, B,{As}) be obtained as follows:

1. Compute the SVD factorization H = PS; i.e. P = UDY? and S = D2V
2. Let o (resp. B) be the e-row of P (resp. e-column of S)
3. Let A, = PTH,S*, where H, € R”9%8 is a sub-block of Hy

» Suppose H € R”*S and Hy, € R?9%S satisfy max{|H — H|2, max, [Hy — Ho|2} < A
» Let A= (&, B,{As}) be obtained as follows:

1. Compute the SA\/D rank-n approxirrlation H~ |3§ i.e. ISA: l:lnlAD},/2 and § = IAD,I,/2\A/I
2. Let é(T (resp. B) be the e-row of P (resp. e-column of S)
3. Let A, = PTH,S*

Claim For any pair of Holder conjugate (p, g) we have

B— B

max{| &« — &|

pr | qvmo?x HAU*Aqu} <0(4)



Applications and Limitations of Perturbation Bounds

Applications
» Analysis of machine learning algorithms for WFA [BM12, BCLQ14, BM17]
» Statistical properties of classes of WFA (e.g. Rademacher complexity) [BM15, BM18]
» Continuity of operations on WFA and rational languages [BGP17]

Limitations
» Automaton—Language: grow with |x|, depend on representation chosen for A
» Language—Hankel: only applies to restricted choice of norms (?7)

» Hankel—Automaton: depends on algorithm, cumbersome to prove
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3. Singular Value Automata: Definition



Motivation: Approximate Minimization

» Suppose f is a weighted language with rank(f) = n and |f| < «©
» Problem Given /i < n find f with rank(#) = f such that

If —f|~ min ||f—f|

rank(f’)<A

» Typically, f is given by a minimal WFA A and the output is a WFA A with |A| = 7

» The techniques described so far are too brittle to solve this problem!



Aside: Operators on Hilbert Spaces

>

Let Xy, X5 be a separable Hilbert spaces. Any linear operator T : Xy — X» can be
represented as an infinite matrix

A linear operator T : X1 — Xy is bounded if || T|op = supjyj, <1 [ Tv[x, <

lloc
The adjoint T* : Xo — X7 of a bounded linear operator T is given by
(Tu, vy, = (u, TH0)x,
A bounded linear operator T is compact if it is the limit of a sequence of finite-rank
operators (w.r.t. the topology induced by || e |}).

» Example: all finite-rank operators are compact

Compact linear operators T admit SVD (a.k.a. Hilbert-Schmidt decomposition)
k
T = UDV* = ) siuivj, o)y,
i=1

Here k = rank(T) < o0, and if kK = o then lim;_,, s; = 0.

Finite-rank bounded operators T admit a pseudo-inverse T™



Hankel Operators

A Hankel matrix Hy € R="*X" can be interpreted as a linear operator Hf : R*" — R*":

(Hrg)(x Z f(x-y)g
yexrx

» Fliess—Kronecker: Finite rank if and only if f rational
» When does it admit an SVD? When it is a compact operator on a Hilbert space!

Shift Characterization

» Define the forward /backward left/right shift operators L, L%, Ry, R: : RY" — R*" as:
(L5F)(x) = f(ox), (RGf)(x) = f(x0)

0-71X X1 = 0 X()-i1 X =0
<L0f><x>={“ ) a=c <R6f><x>={f( ) =«

0 otherwise 0 otherwise

» Exercise A linear operator T : R*" — R*" is Hankel if and only if RT = TL,, Vo e X



Aside: Operator-Theoretic Proof of Fliess’ Theorem

Claim Suppose Hf : £, — {5 is bounded and has finite rank n. Then there exists a WFA
A ={«, B, {As}) with n states such that f = f

Proof

Take a rank factorization Hf = PS and note P and S are bounded and finite rank.
Build the automaton A by taking:

» «! the e-row of P:ie. ! = P(e,—)
» B the e-column of S; ie. B =S(—,¢)
» A; =SL,S™

It suffices to show that for any x € £* we have o' A, = P(x, —). By induction on length of x:

o A,As = P(x, —)SLoST = TT,PSL,S™ = TT,HfL,S™ = TT,REH[S™
= TI,R%PSS™ = TT,R%P = T,,P = P(x0, —)



Which Hankel Operators Admit an SVD?

A Hankel matrix Hy € R="*%" can be interpreted as a linear operator Hf : R*" — R*":

(Hrg)(x Z f(x-yg
yexr*

» Fliess—Kronecker: Finite rank if and only if f rational
» When does it admit an SVD? When it is a compact operator on a Hilbert space!
» Finite rank operators are compact if and only if they are bounded:
IHfllop = supjg|,<1 [Hrgl2 <
» When is a finite rank Hankel operator bounded?



Boundedness of {, and Dirichlet Norms

Claim Suppose f : Z* — R is rational. Then |f|> < oo if and only if |f|p < o
Proof One direction is easy:

IFI3 =, FO)? < D) (Xl + DF(x)* = |5 .

xexr* xexr*

The other direction is more technical. Let A = {(«x, 3, {As}) be a minimal WFA for 2 with n

states. Then one can show that the spectral radius of A = > A, satisfies p = p(A) <1
(see [BPP17]).

Z f(x)2: Z (xTAXB = o(T(A61+...+AGk)...(A01 +...+Ack)|3

xeXt xeXt
a AfB < O(t"pt) .

Therefore, since p < 1 we have

112 = S (X + DFx2 = 3 3 ¢+ DaT AR < 3 0(eHpt)

XEX* t=>0 xeXt t=0



Bounded Hankel Operators of Finite Rank

Let Hf : &, — {5 be a finite rank Hankel operator.
Theorem The operator Hy is bounded if and only if f € {5.
Proof Since f is the first row of H¢, from H¢ bounded to |f||> < oo is easy:

% > |Hrlop = sup |[Hrgla = [Hrecl2 = [f]2 -
lgll2<1

The other direction uses the boundedness of the Dirichlet norm: let |g|l» < 1, then

2
|Hegls = )] (Z f(x-y)g(y)> = Y (Lif g)

xeX* \yel* xeX*
<lgl3 X} ILfI3 < >} ILifl3
xeX* xexr*
= D> D ey =Y (2 + D)f(2? = |flp <o
XEL* yeX* zEX*



Are We Done Yet?

Approximate Minimization Strategy

1. Take rational f with rank(f) = n and |f|2 <
2. Since Hf : €, — {5 is compact, it admits an SVD

n
Hf = Zs,-u,-<v,-, o> .
i=1

A

3. Given /i < n take the corresponding low-rank approximation H
A
H= Zs;u;<v,-, o> .
i=1

4. Compute a WFA A from H <« NOT NECESSARILY HANKEL!
5. Bound the error between f and f — fA as

If = fll2 < [Hf = Alop = 5341 -



Duality Between Rank Factorization and Minimal WFA

Well-known fact: If M has rank n and M = PS = P’S’ are two rank factorizations, then there
exists invertible Q € R™*" such that

PP=PQ S'=Q's

Well-known fact: If A= (&, B, {As}) and A’ = (', B’, {AL}) are minimal WFA for f of rank
n, then there exists invertible Q € R"*" such that

o« =a'Q B'=Q'p A,=Q'A,Q

Less-known fact: From the proof of the Fliess—Kronecker theorem applied to f of rank n one
obtains a bijection

{(P,S):Hf = PS,rank(P) =rank(S) = n} < {A={(,B,{As}):fa="T,|A =n}



Singular Value Automata

» Let A be a minimal WFA with n states computing f

» Definition A is a singular value automaton (SVA) if the forward-backward factorization
Hf = P4S4 comes from a singular value decomposition, i.e. P4 = UD2 S, = DY/2VT,
with UTU =V'V =1 and D = diag(s1,...,5,) with 57 > --- > 5, >0

» Theorem Every rational f with ||f|> < co admits an SVA

» The SVA of f is "“as unique” as the SVD of H¢
» Example: if all inequalities between singular values are strict, SVD is unique up to sign
changes in pairs of associated left/right singular vectors = SVA unique up to sign changes in
pairs of associated initial /final weights
» Given a minimal WFA A = («, 3, {As}) for f with |[f|» < oo there exists an invertible
Q € R"*" such that AQ = (QTe, Q71, {Q 'A;Q}) is an SVA for f
» Definition could be changed to have P4 = U and Sy = DV, or P4 = UD and
S, = V. But the current one makes computation of Q above more “symmetric”



Why Are SVA Special?

v

It orthogonalizes the states of a WFA!
Suppose A = («, 3, {As}) is an SVA with n states for f inducing the SVD

v

Hf = ZB,’U,‘<V;, O> .
i=1

v

For i€ [n] let Aj = (x,e;, {As}) wheree; = (0,..., 1..., 0) is the ith coordinate vector

» The language f; of A; is given by f;(x) = o« Ace; = aa(x)'[i]; i.e. is the “memory” of
state i after reading x

» The language f; is also the ith column of the forward matrix P4 = UDY?; ie. f; = \/5:u;

» Since the columns of U are orthonormal, the languages f; and f; with i # j are orthogonal
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4. Singular Value Automata: Computation



The Gramians of a WFA

» Let A be a minimal WFA for f with n = rank(f) inducing the rank factorization Hf = PS
(ie. P=Pyand S =S,)

» The reachability Gramian of A is the (possibly infinite) n x n matrix G, = PP

G, =P P= 3 Px ) Px—)= Y («'A)" (aA)

xeX* xeX*

» The observability Gramian of A is the (possibly infinite) n x n matrix Gs = SS' given by

Go=SS" = > S(—x)S(—x)" = > (AB)(AB)’

XEX* xeX*



Existence of the Gramians

Let A be a minimal WFA for f with n = rank(f) inducing the rank factorization Hr = PS (i.e.
P:PAandS:SA)

Claim The Gramians of A are finite if and only if || <

Proof (one direction only)

Suppose |f|2 < 0 and let A’ = AQ = (Q", Q71B, {Q 'A,Q}) be an SVA for f
Observe the Gramians G|, and G/ of A’ exist since

G, =P, P, =D"2UTUDY? =D
G, =SS, =DY2vTvDY2 =D

On the other hand, since P4 = P4Q and S5 = Q1S4 we have
G,=Q'G,Q G.=Q 'G.Q!

Therefore G, and Gs must be finite



From Gramians to SVA

» Let A be a minimal WFA for f with ||, < o

» Suppose we have the Gramians of A: G, and Gg

v

Recall from the previous proof that
> If A”is SVA then G, = G; = D = diag(sy, .. ., Sp)
» If A’ = A9 then G, = Q'G,Qand G, = Q 'G.Q*
» Claim The following algorithm returns Q such that AQ is an SVA
1. Compute the Cholesky decompositions G, = L,,L; and Gg = L,L;
2. Compute the SVD decomposition L)L, = UDV "
3. Let Q =L, "UDY?
» In particular, the D in this algorithm is the matrix of singular values of Hy

» See proof in [BPP17]



Computing Norms Using Gramians

Suppose A is a minimal WFA for f with |f|2 < 0.
Let G, and G; be the Gramians of A.
Then the following hold:

- |fI3 = & Goe = BTGB
- 1F3 = [Hel2 = Tr(G,Gs)
 [He 2, = p(G,Ge) = max{[A| : det(G,Gs — Al) = 0}



Computing the Gramians Using Fixed-Points
Let A be a minimal WFA for f with |f|]> < 0.

Claim X = G, and Y = G; are solutions of the fixed-point equations

X=Fp(X)=aax’ + Y AIXA; Y =F(Y)=pB  + > A;YA]
o o

Proof Recall G, = P Ps =Y, 5. Pa(x, —)Pa(x,—)" and Pa(x, —) = o' A,. Therefore:

Go= X (Ala) (oA = aa’ + Y] (Al @)(a A)

XEL* xeX+

=o'+ > Y AJ(A]x)(axTA)A,

oeX xeXl*

=o' + Y A] ( > (Ach)(chAx)> As = aa' + > AlGA,

oex xexr* oex



Solving the Fixed-Point Equations

» Recall the reachability Gramian G, is a solution of

X = Fp(X) = o + Y AIXA,
o

v

Let p be the spectral radius of > Ay ® Ay, where ® denotes the Kronecker product (i.e.
A, ® Ay € R
» We distinguish two cases. If p < 1:
» X = F,(X) has a unique solution
» Can be found by solving the linear system with n? unknowns obtained through vectorization:
vec(axa') = @ o and vec(AXA;) = (A, ® Ay) T vec(X)
»ifp>=1:
» X = F,(X) might have multiple solutions (there is at least one because G, is defined)
» In this case rephrase the problem: G, is the least positive semi-definite solution of the linear
matrix inequality X > F,(X)
» The solution can be found by semi-definite programming



Computing SVA: Summary

Suppose A is a WFA computing a function f. To compute an SVA for f do:
1. Testif |f|o <

Minimize A if necessary

Compute Gramians G, and G; (using linear solver or semi-definite solver)

Find change of basis Q through Cholesky and SVD of finite matrices

Return AQ

AN

Final remarks
» Runs in time polynomial in |A| and |X|
» Easy to implement in Python or MATLAB
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5. Approximate Minimization via SVA Truncation



Approximate Minimization with SVA

» Suppose f is a weighted language with rank(f) = n and ||f]» < co. Let s; be the singular
values of Hy
» Problem Given /i < n find f with rank(f) = A such that

|f—flax min |[f—f'|2
rank(f’)<A

» SVA Solution Compute SVA A for f and obtain A by removing the last n — A states

n
If =f3< >, sf

i=A+1

» Lower Bound Considering approximation in terms of | e |p instead of | e ||2:

min HfffHD Zs

/
rank(f’)< A1



Intuition for Removing the Last States from an SVA

» Suppose A = (&, 3, {As}) is an SVA. Since the Gramians satisfy
G, = G; = D = diag(s, .. ., S,), we have

D=oax' +) AlDA,
o

D=BR"+) A;DA]
[0}

» By looking at the diagonal entries in these equations we can deduce

o min{s;, s;}
A < s et e PO
‘ G(I'J)| max{s;,sj}

» For example, connections between the first and last state are weak:

|Ac(L, n)], [Ac(n, 1)] < vV Sn/81

» See [BPP15] for a “pedestrian” bound for | f — f|, based on this idea



Analysis of SVA Approximate Minimization
SVA Truncated SVA

C oD W
“:_a(z)] ocz_ 0 =N« ,
_[5(1) N 38
B = @ | B = e =B,
A [ agy A A [ Ao — AN
| AGY AP 1 AgY o °
[ 1, 0
"=1o 0}

Analysis
» Let A be SVA for f and A truncated SVA computing f
» Show ||f]l2 < ||f]|> (see [BPP17])
» Show ||f — f < 52 1+ -+ 525 (organic free-range proof on the board)
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6. Concluding Remarks



The Tree Case

» Take a ranked alphabet X =Xy U X; U ---

» A weighted tree automaton with n states is a tuple A = (&, {T<}resr.,, {Bo}oex,) Where

x, Bo- c Rn TT e (Rn)®rk(T)+l

» A defines a function f4 = Treesy — R through recursive vector-tensor contractions

» There exists an analogue of the Hankel matrix for f : Treesy — R where rows are indexed
by contexts and columns by trees

» The same ideas lead to a notion of singular value tree automata [RBC16]

» In this case the computation of the Gramians is already a highly non-trivial problem



The One Symbol Case

>

When |Z| =1, Z* = N and one recovers the classical Hankel operators studied in complex
analysis and the impulse responses studied in control theory and signal processing

A new perspective in terms of functions of one complex variable arises from the
power-series point of view: for z € C with small enough modulus

~—

flz) = D a2 = Y a(zA)B = aT (1 - zA) 71 = P(z

k=0 k=0 q(z

~—

N can be embedded into a locally compact Abelian group Z, {, gets a new definition in
terms of Fourier analysis, Hankel operators get a new definition in terms of Hardy spaces,
etc.

Example: Nehari's theorem says that |H¢|op = sup|,<1 |f(2)]

Suggested readings: Peller's “Hankel Operators and Their Applications” [Pel12] and
Fuhrmann’s “A Polynomial Approach to Linear Algebra” [Fuhl1]



Open Problems

» Complexity of testing |f||, < R, computing and approximating {, and other norms on
languages

» Complexity of optimal approximate minimization in terms of | e ||2

» Quality of approximation of SVA truncation in terms of | e |» or analysis of approximation
in terms of || e ||p

» Approximate minimization with other norms



Conclusions

» Analytic automata theory is a vastly understudied area, rich in interesting open problems
(for the mathematically adventurous)

» Singular value automata provide a powerful canonical form for WFA over the reals

» Approximate minimization is a generalization of automata minimization with connections
to machine learning



Thanks!
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